CLI Manual

Product Model: xStack® DGS-3400 Series
Layer 2+ Gigabit Ethernet Managed Switch
Release 2.6
Table of Contents

INTRODUCTION ...1
USING THE CONSOLE CLI ...3
COMMAND SYNTAX ...7
BASIC SWITCH COMMANDS 9
SWITCH PORT COMMANDS ..23
PORT SECURITY COMMANDS ...27
STACKING COMMANDS ..31
NETWORK MANAGEMENT (SNMP) COMMANDS ..35
SWITCH UTILITY COMMANDS ...55
NETWORK MONITORING COMMANDS ..67
MULTIPLE SPANNING TREE PROTOCOL (MSTP) COMMANDS ..82
FORWARDING DATABASE COMMANDS ...94
TRAFFIC CONTROL COMMANDS ...102
QOS COMMANDS ..106
PORT MIRRORING COMMANDS ..116
VLAN COMMANDS ..119
ISM VLAN COMMANDS ..130
LINK AGGREGATION COMMANDS ..134
IP–MAC–PORT BINDING (IMPB) COMMANDS ..139
IP COMMANDS (INCLUDING IPV6) ..151
IPV6 NEIGHBOR DISCOVERY COMMANDS ..158
IGMP SNOOPING COMMANDS ...164
MLD SNOOPING COMMANDS ..174
LIMITED IP MULTICAST ADDRESS (IGMP FILTERING) ..182
802.1X COMMANDS ..185
ACCESS CONTROL LIST (ACL) COMMANDS ..209
TIME RANGE COMMANDS ..230
SAFEGUARD ENGINE COMMANDS ..232
TRAFFIC SEGMENTATION COMMANDS ..235
TIME AND SNTP COMMANDS ..237
DHCP RELAY COMMANDS ..242
ROUTING TABLE COMMANDS ..253
MAC NOTIFICATION COMMANDS ..258
ACCESS AUTHENTICATION CONTROL COMMANDS ...262
SSH COMMANDS ..282
SSL COMMANDS ..289
JUMBO FRAME COMMANDS ..294
INTRODUCTION

The xStack® DGS–3400 Series is a member of the D–Link xStack® switch family. xStack® is a complete family of stackable switches that range from edge 10/100Mbps switches to core Gigabit switches. xStack® provides unsurpassed performance, fault tolerance, scalable flexibility, robust security, standard–based interoperability and an impressive support for 10–Gigabit technology to future–proof departmental and enterprise network deployments with an easy migration path.

The Switch can be managed through the Switch’s serial port, Telnet, or the Web–based management agent. The Command Line Interface (CLI) can be used to configure and manage the Switch via the serial port or Telnet interfaces.

This manual provides a reference for all of the commands contained in the CLI. Configuration and management of the Switch via the Web–based management agent is discussed in the Manual. For detailed information on installing hardware please refer also to the Manual.

Accessing the Switch via the Serial Port

The Switch’s serial port’s default settings are as follows:

- 115200 baud
- no parity
- 8 data bits
- 1 stop bit

A computer running a terminal emulation program capable of emulating a VT–100 terminal and a serial port configured as above is then connected to the Switch’s serial port via an RS–232 DB–9 cable.

With the serial port properly connected to a management computer, the following screen should be visible. If this screen does not appear, try pressing Ctrl+r to refresh the console screen.

Figure 1–1. Initial CLI screen

There is no initial username or password. Just press the Enter key twice to display the CLI input cursor – DGS–3426:5#. This is the command line where all commands are input.

Setting the Switch’s IP Address

Each Switch must be assigned its own IP Address, which is used for communication with an SNMP network manager or other TCP/IP application (for example BOOTP, TFTP). The Switch’s default IP address is 10.90.90.90. You can change the default Switch IP address to meet the specification of your networking address scheme.

The Switch is also assigned a unique MAC address by the factory. This MAC address cannot be changed, and can be found on the initial boot console screen – shown below.
The Switch’s MAC address can also be found in the Web management program on the Switch Information (Basic Settings) window on the Configuration menu.

The IP address for the Switch must be set before it can be managed with the Web–based manager. The Switch IP address can be automatically set using BOOTP or DHCP protocols, in which case the actual address assigned to the Switch must be known.

The IP address may be set using the Command Line Interface (CLI) over the console serial port as follows:

1. Starting at the command line prompt, enter the commands `config ipif System ipaddress xxx.xxx.xxx.xxx/yyy.yyy.yyy.yyy`. Where the x’s represent the IP address to be assigned to the IP interface named System and the y’s represent the corresponding subnet mask.

2. Alternatively, you can enter `config ipif System ipaddress xxx.xxx.xxx.xxx/z`. Where the x’s represent the IP address to be assigned to the IP interface named System and the z represents the corresponding number of subnets in CIDR notation.

The IP interface named System on the Switch can be assigned an IP address and subnet mask which can then be used to connect a management station to the Switch’s Telnet or Web–based management agent.

```bash
DGS-3426:5#config ipif System ipaddress 10.73.21.35/255.0.0.0
Command:config ipif System ipaddress 10.73.21.35/8
Success.
```

In the above example, the Switch was assigned an IP address of 10.73.21.35 with a subnet mask of 255.0.0.0. The system message Success indicates that the command was executed successfully. The Switch can now be configured and managed via Telnet, SNMP MIB browser and the CLI or via the Web–based management agent using the above IP address to connect to the Switch.

Note: The DGS–3400 series of switches have the capability to be configured for an IP address of 0.0.0.0, or, in essence, have no IP address. This function maybe used to disable Layer 3 functions of the Switch. When the IP address is set to 0.0.0.0 (invalid IP address), the Switch can only be managed through the console port or SIM. Other management applications such as Telnet, Web–based and SNMP cannot be used to manage the Switch when its IP address is 0.0.0.0.
USING THE CONSOLE CLI

The Switch supports a console management interface that allows the user to connect to the Switch’s management agent via a serial port and a terminal or a computer running a terminal emulation program. The console can also be used over the network using the TCP/IP Telnet protocol. The console program can be used to configure the Switch to use an SNMP–based network management software over the network.

This chapter describes how to use the console interface to access the Switch, change its settings, and monitor its operation.

Note: Switch configuration settings are saved to non–volatile RAM using the `save` command. The current configuration will then be retained in the Switch's NV–RAM, and reloaded when the Switch is rebooted. If the Switch is rebooted without using the save command, the last configuration saved to NV–RAM will be loaded.

Connecting to the Switch

The console interface is used by connecting the Switch to a VT100–compatible terminal or a computer running an ordinary terminal emulator program (e.g., the HyperTerminal program included with the Windows operating system) using an RS–232C serial cable. Your terminal parameters will need to be set to:

- VT–100 compatible
- 115200 baud
- 8 data bits
- No parity
- One stop bit
- No flow control

Users may also access the same functions over a Telnet interface. Once you have set an IP address for your Switch, you can use a Telnet program (in VT–100 compatible terminal mode) to access and control the Switch. All of the screens are identical, whether accessed from the console port or from a Telnet interface.

After the Switch reboots and you have logged in, the console looks like this:

![Initial Console Screen after logging in](image)

Commands are entered at the command prompt, `DGS–3426:5#`. There are a number of helpful features included in the CLI. Entering the `?` command will display a list of all of the top–level commands.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cable_diag ports</code></td>
<td>Clear cable diagnostic information on ports.</td>
</tr>
<tr>
<td><code>clear address_binding dhcp_snoop binding_entry ports</code></td>
<td>Clear address binding DHCP snooping binding entries from ports.</td>
</tr>
<tr>
<td><code>clear arptable</code></td>
<td>Clear ARP table.</td>
</tr>
<tr>
<td><code>clear attack_log</code></td>
<td>Clear attack log.</td>
</tr>
<tr>
<td><code>clear counters</code></td>
<td>Clear counter statistics.</td>
</tr>
<tr>
<td><code>clear dhcp_binding</code></td>
<td>Clear DHCP binding entries.</td>
</tr>
<tr>
<td><code>clear fdb</code></td>
<td>Clear flow database.</td>
</tr>
<tr>
<td><code>clear jwac auth_state</code></td>
<td>Clear jwac authorization state.</td>
</tr>
<tr>
<td><code>clear log</code></td>
<td>Clear log messages.</td>
</tr>
<tr>
<td><code>clear mac_based_access_control auth_state</code></td>
<td>Clear MAC-based access control authentication state.</td>
</tr>
<tr>
<td><code>clear port_security_entry port</code></td>
<td>Clear port security entry on a specific port.</td>
</tr>
<tr>
<td><code>clear wac auth_state</code></td>
<td>Clear WAC authorization state.</td>
</tr>
<tr>
<td><code>config 802.1p default_priority</code></td>
<td>Configure 802.1p default priority.</td>
</tr>
<tr>
<td><code>config 802.1p user_priority</code></td>
<td>Configure 802.1p user priority.</td>
</tr>
<tr>
<td><code>config 802.1x auth_failover</code></td>
<td>Configure 802.1x authentication failover.</td>
</tr>
<tr>
<td><code>config 802.1x auth_mode</code></td>
<td>Configure 802.1x authentication mode.</td>
</tr>
<tr>
<td><code>config 802.1x auth_parameter ports</code></td>
<td>Configure 802.1x authentication parameters on ports.</td>
</tr>
<tr>
<td><code>config 802.1x auth_protocol</code></td>
<td>Configure 802.1x authentication protocol.</td>
</tr>
<tr>
<td><code>config 802.1x authorization_network radius</code></td>
<td>Configure 802.1x authorization network radius.</td>
</tr>
</tbody>
</table>

Figure 2–2. The ? Command

When entering a command without its required parameters, the CLI will prompt you with a **Next possible completions**: message.

Figure 2–3. Example Command Parameter Help

In this case, the command `config account` was entered with the parameter `<username>`. The CLI will then prompt to enter the `<username>` with the message, **Next possible completions**: Every command in the CLI has this feature, and complex commands have several layers of parameter prompting.

In addition, after typing any given command plus one space, users can see all of the next possible sub-commands, in sequential order, by repeatedly pressing the `Tab` key.

To re-enter the previous command at the command prompt, press the up arrow cursor key. The previous command will appear at the command prompt.
In the above example, the command `config account` was entered without the required parameter `<username>`, the CLI returned the Next possible completions: `<username>` prompt. The up arrow cursor control key was pressed to re-enter the previous command (`config account`) at the command prompt. Now the appropriate username can be entered and the `config account` command re-executed.

All commands in the CLI function in this way. In addition, the syntax of the help prompts are the same as presented in this manual – angle brackets `< >` indicate a numerical value or character string, braces `{ }` indicate optional parameters or a choice of parameters, and brackets `[]` indicate required parameters.

If a command is entered that is unrecognized by the CLI, the top-level commands will be displayed under the Available commands: prompt.

The top-level commands consist of commands such as `show` or `config`. Most of these commands require one or more parameters to narrow the top-level command. This is equivalent to `show what?` or `config what?` Where the what? is the next parameter.

For example, entering the `show` command with no additional parameters, the CLI will then display all of the possible next parameters.
DGS-3426:5#show
Command: show
Next possible completions:

802.1p 802.1x access_profile account
Accounting acct_client address_binding arpentry
attack_log auth_client auth_diagnostics
auth_session_statistics auth_statistics authen
authen_enable authen_login authen_policy authentication
dhcp dhcps dhcp_relay dhcp_server
dot1v_protocol_group double_vlan error
dfdb filter firmware flow_meter
generalized_arp greeting_media gvrp hol_prevention
ipip ipif
ipif_vlan_replication_entry iproute ipv6
ipv6route jumbo_frame jwac lacp_port
limited link_aggregation lldp log
log_save_timing loopdetect mac_based_access_control
mac_based_access_control_local mac_based_vlan mac_notification
mirror mld_snooping module_info multicast
multicast_fdb packet port port_security
ports pvid qinq radius
router_ports rspan safeguard_engine scheduling
scheduling_mechanism serial_port session
Sflow sim smtp
ssh ssl stack_device stack_information
stacking_mode stp switch syslog
system_severity time traffic
traffic_segmentation trusted_host utilization
vlan vlan_translation wac

DGS-3426:5#

Figure 2–6. Next possible completions: Show Command
In the above example, all of the possible next parameters for the show command are displayed. At the next command prompt, the up arrow was used to re-enter the show command, followed by the account parameter. The CLI then displays the user accounts configured on the Switch.
COMMAND SYNTAX

The following symbols are used to describe how command entries are made and values and arguments are specified in this manual. The online help contained in the CLI and available through the console interface uses the same syntax.

Note: All commands are case-sensitive. Be sure to disable Caps Lock or any other unwanted function that changes text case.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Purpose</th>
<th>Syntax</th>
<th>Description</th>
<th>Example Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><angle brackets></td>
<td>Encloses a variable or value that must be specified.</td>
<td>`create account [admin</td>
<td>operator</td>
<td>user] <username 15>`</td>
</tr>
<tr>
<td>[square brackets]</td>
<td>Encloses a required value or set of required arguments. One value or argument can be specified.</td>
<td>`create account [admin</td>
<td>operator</td>
<td>user] <username 15>`</td>
</tr>
<tr>
<td>**</td>
<td>vertical bar**</td>
<td>Separates two or more mutually exclusive items in a list, one of which must be entered.</td>
<td>`create account [admin</td>
<td>operator</td>
</tr>
<tr>
<td>{braces}</td>
<td>Encloses an optional value or set of optional arguments.</td>
<td>`reset {config</td>
<td>system}`</td>
<td>In the above syntax example, users have the option to specify config or system. It is not necessary to specify either optional value, however the effect of the system reset is dependent on which, if any, value is specified. Therefore, with this example there are three possible outcomes of performing a system reset. Do not type the braces.</td>
</tr>
</tbody>
</table>
(parentheses)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Indicates at least one or more of the values or arguments in the preceding syntax enclosed by braces must be specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config dhcp_relay {hops <value 1-16></td>
</tr>
<tr>
<td>Description</td>
<td>In the above syntax example, users have the option to specify hops or time or both of them. The "(1)" following the set of braces indicates at least one argument or value within the braces must be specified. Do not type the parentheses.</td>
</tr>
<tr>
<td>Example command</td>
<td>config dhcp_relay hops 3</td>
</tr>
</tbody>
</table>

Line Editing Key Usage

<table>
<thead>
<tr>
<th>Key</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Deletes the character under the cursor and then shifts the remaining characters in the line to the left.</td>
</tr>
<tr>
<td>Backspace</td>
<td>Deletes the character to the left of the cursor and then shifts the remaining characters in the line to the left.</td>
</tr>
<tr>
<td>Insert or Ctrl+R</td>
<td>Toggle on and off. When toggled on, inserts text and shifts previous text to the right.</td>
</tr>
<tr>
<td>Left Arrow</td>
<td>Moves the cursor to the left.</td>
</tr>
<tr>
<td>Right Arrow</td>
<td>Moves the cursor to the right.</td>
</tr>
<tr>
<td>Up Arrow</td>
<td>Repeats the previously entered command. Each time the up arrow is pressed, the command previous to that displayed appears. This way it is possible to review the command history for the current session. Use the down arrow to progress sequentially forward through the command history list.</td>
</tr>
<tr>
<td>Down Arrow</td>
<td>The down arrow will display the next command in the command history entered in the current session. This displays each command sequentially as it was entered. Use the up arrow to review previous commands.</td>
</tr>
<tr>
<td>Tab</td>
<td>Shifts the cursor to the next field to the left.</td>
</tr>
</tbody>
</table>

Multiple Page Display Control Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Displays the next page.</td>
</tr>
<tr>
<td>CTRL+c</td>
<td>Stops the display of remaining pages when multiple pages are to be displayed.</td>
</tr>
<tr>
<td>ESC</td>
<td>Stops the display of remaining pages when multiple pages are to be displayed.</td>
</tr>
<tr>
<td>n</td>
<td>Displays the next page.</td>
</tr>
<tr>
<td>p</td>
<td>Displays the previous page.</td>
</tr>
<tr>
<td>q</td>
<td>Stops the display of remaining pages when multiple pages are to be displayed.</td>
</tr>
<tr>
<td>r</td>
<td>Refreshes the pages currently displayed.</td>
</tr>
<tr>
<td>a</td>
<td>Displays the remaining pages without pausing between pages.</td>
</tr>
<tr>
<td>Enter</td>
<td>Displays the next line or table entry.</td>
</tr>
</tbody>
</table>
BASIC SWITCH COMMANDS

The basic switch commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create account</td>
<td>[admin</td>
</tr>
<tr>
<td>config account</td>
<td><username> {encrypt [plain_text</td>
</tr>
<tr>
<td>show account</td>
<td></td>
</tr>
<tr>
<td>delete account</td>
<td><username> {<string>}</td>
</tr>
<tr>
<td>enable password encryption</td>
<td></td>
</tr>
<tr>
<td>disable password encryption</td>
<td></td>
</tr>
<tr>
<td>show module_info</td>
<td></td>
</tr>
<tr>
<td>show device_status</td>
<td></td>
</tr>
<tr>
<td>show session</td>
<td></td>
</tr>
<tr>
<td>show switch</td>
<td></td>
</tr>
<tr>
<td>show serial_port</td>
<td></td>
</tr>
<tr>
<td>config serial_port</td>
<td>{baud_rate [9600</td>
</tr>
<tr>
<td>enable clipaging</td>
<td></td>
</tr>
<tr>
<td>disable clipaging</td>
<td></td>
</tr>
<tr>
<td>telnet</td>
<td><ipaddr> {tcp_port <value 0-65535>}</td>
</tr>
<tr>
<td>enable telnet</td>
<td><tcp_port_number 1-65535></td>
</tr>
<tr>
<td>disable telnet</td>
<td></td>
</tr>
<tr>
<td>enable web</td>
<td><tcp_port_number 1-65535></td>
</tr>
<tr>
<td>disable web</td>
<td></td>
</tr>
<tr>
<td>save</td>
<td>{{config <config_id 1-2></td>
</tr>
<tr>
<td>reboot</td>
<td>{<string>}</td>
</tr>
<tr>
<td>reset</td>
<td>{{config</td>
</tr>
<tr>
<td>login</td>
<td></td>
</tr>
<tr>
<td>logout</td>
<td></td>
</tr>
<tr>
<td>create trusted_host</td>
<td>[<ipaddr></td>
</tr>
<tr>
<td>delete trusted_host</td>
<td>[ipaddr <ipaddr></td>
</tr>
<tr>
<td>show trusted_host</td>
<td>{<network_address>}</td>
</tr>
</tbody>
</table>
Each command is listed, in detail, in the following sections.

create account

Purpose
Used to create user accounts.

Syntax
```
create account [admin | operator | user] <username 15>
```

Description
This command is used to create user accounts that consist of a case sensitive username of 1 to 15 characters and a case sensitive password of 0 to 15 characters. Up to 8 user accounts can be created.

Parameters
- [admin | operator | user] <username 15>

Restrictions
- Only Administrator-level users can issue this command.
- Usernames can be between 1 and 15 characters.
- Passwords can be between 0 and 15 characters.

Example usage:

To create an administrator-level user account with the username “dlink”.

```bash
DGS–3426:5# create account admin dlink
Command: create account admin dlink
Enter a case-sensitive new password:****
Enter the new password again for confirmation:****
Success.
DGS–3426:5#
```

NOTICE: In case of lost passwords or password corruption, please refer to the Appendix B at the end of this manual, which will guide you through the steps necessary to resolve this issue.

config account

Purpose
Used to configure user accounts

Syntax
```
config account <username> {encrypt [plain_text| sha_1] <password>}
```

Description
When the password information is not specified in the command, the system will prompt the user to input the password interactively. For this case, the user can only input the plain text password.

If the password is present in the command, the user can select to input the password in the plain text form or in the encrypted form. The encryption algorithm is based on SHA-1.

Parameters
- `<username>` – Name of the account. The account must already be defined.
- `plain_text` – Select to specify the password in plain text form.
- `sha_1` – Select to specify the password in the SHA-1 encrypted form.
- `password` – The password for the user account.

The length for of password in plain-text form and in encrypted form are different. For the plain-text form, passwords must have a minimum of 0 character and can have a maximum of 15 characters. For the encrypted form password, the length is fixed to 35 bytes long. The password is case-sensitive.

Restrictions
- Only Administrator level users can issue this command.
- Usernames can be between 1 and 15 characters.
- Passwords can be between 0 and 15 characters.

Example usage:

10
To configure the user password of “dlink” account:

```
DGS–3426:5#config account dlink
Command: config account dlink

Enter a old password:****
Enter a case-sensitive new password:****
Enter the new password again for confirmation:****
Success.
DGS–3426:5#
```

show account

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display user accounts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show account</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command displays all user accounts created on the Switch. Up to eight user accounts can exist at one time.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To display the accounts that have been created:

```
DGS–3426:5#show account
Command: show account

Current Accounts:
Username         Access Level
---------------  ------------
dlink             Admin

Total Entries: 1
DGS–3426:5#
```

delete account

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete an existing user account.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>delete account <username> {<string>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command deletes an existing entry.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><username></code> – Name of the user who will be deleted.</td>
</tr>
<tr>
<td></td>
<td><code><string></code> - yes</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete the user account “dgallinari”:

```
DES–3528:5#delete account dgallinari
Command: delete account dgallinari
Success.
DES–3528:5#
```
enable password encryption

Purpose
Used to enable password encryption.

Syntax
```
enable password encryption
```

Description
The user account configuration information will be stored in the configuration file, and can be applied to the system later.

If the password encryption is enabled, the password will be in encrypted form.

When password encryption is disabled, if the user specifies the password in plain text form, the password will be in plain text form. However, if the user specifies the password in encrypted form, or if the password has been converted to encrypted form by the last `enable password encryption` command, the password will still be in the encrypted form. It cannot be reverted to the plain text form.

Parameters
None.

Restrictions
Only Administrator-level users can issue this command.

Example usage:

To enable password encryption:

```
DGS-3426:5#enable password encryption
Command: enable password encryption
Success.

DGS-3426:5#
```

disable password encryption

Purpose
Used to disable password encryption.

Syntax
```
disable password encryption
```

Description
The user account configuration information will be stored in the configuration file, and can be applied to the system later.

If the password encryption is enabled, the password will be in encrypted form.

When password encryption is disabled, if the user specifies the password in plain text form, the password will be in plain text form. However, if the user specifies the password in encrypted form, or if the password has been converted to encrypted form by the last `enable password encryption` command, the password will still be in the encrypted form. It cannot be reverted to the plain text form.

Parameters
None.

Restrictions
Only Administrator-level users can issue this command.

Example usage:

To disable password encryption:

```
DGS-3426:5#disable password encryption
Command: disable password encryption
Success.

DGS-3426:5#
```
show module_info

Purpose
Used to display information about installed modules.

Syntax

```
show module_info
```

Description
Displays information about optional modules that may be installed on the Switch.

Parameters
None.

Restrictions
None.

Example usage:

To display information about installed modules:

```
DGS-3426:5# show module_info
Command: show module_info

<table>
<thead>
<tr>
<th>BOX</th>
<th>ID</th>
<th>Module Name</th>
<th>Rev</th>
<th>Serial</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>DEM-410X</td>
<td>A0</td>
<td>PA5A5A5A5A5</td>
<td>1 Port XFP Module</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>DEM-410X</td>
<td>A0</td>
<td>PA5A5A5A5A5</td>
<td>1 Port XFP Module</td>
</tr>
</tbody>
</table>

DGS-3426:5#
```

show device_status

Purpose
Used to display current status of fans and power or power supplies on the system.

Syntax

```
show device_status
```

Description
This command displays the current status of power(s) and fan(s) on the system. There is a status display for all the fans on the Switch. If all fans are working normally, there will a corresponding “OK” in the Fan display field. If any fan fails there will be a corresponding fail message in the Fan display field, such as “1,3 Fail”.

Parameters
None.

Restrictions
None.

Example usage:

To display status of fans and power supply:

```
DGS-3426P:5# show device_status
Command: show device_status

Unit 1:
  Internal Power: Active
  External Power: Fail
  Left Fan : OK
  Right Fan : OK
  Back Fan : OK
  CPU Fan : ---

CTRL+C ESC q Quit SPACE n Next Page p Previous Page r Refresh
```
show session

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display a list of currently logged-in users.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show session</td>
</tr>
<tr>
<td>Description</td>
<td>This command displays a list of all the users that are logged-in at the time the command is issued.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To display the way that the users logged in:

```
DGS-3427:4#show session
Command: show session

<table>
<thead>
<tr>
<th>ID</th>
<th>Live Time</th>
<th>From</th>
<th>Level</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0:8:48.860</td>
<td>Serial Port</td>
<td>4</td>
<td>Anonymous</td>
</tr>
</tbody>
</table>

Total Entries: 1
```

show switch

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display general information about the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show switch</td>
</tr>
<tr>
<td>Description</td>
<td>This command displays information about the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the Switch’s information:
show switch

Device Type : DGS–3426 Gigabit Ethernet Switch
MAC Address : 00–01–02–03–04–05
IP Address : 172.18.211.246 (Manual)
VLAN Name : default
Subnet Mask : 255.255.255.0
Default Gateway : 0.0.0.0
Boot PROM Version : Build 1.00–B13
Firmware Version : Build 2.60.B26
Hardware Version : A2
System Name :
System Location :
System Contact :
Spanning Tree : Disabled
GVRP : Disabled
IGMP Snooping : Disabled
MLD Snooping : Disabled
TELNET : Enabled (TCP 23)
WEB : Enabled (TCP 80)
SNMP : Disabled
RMON : Disabled
SSL status : Disabled
SSH status : Disabled
802.1x : Disabled
Jumbo Frame : Off
Clipaging : Enabled
MAC Notification : Disabled
Port Mirror : Disabled
SNTP : Disabled
HOL Prevention State : Enabled
Syslog Global State : Disabled
Single IP Management : Disabled
Dual Image : Supported
Password Encryption Status : Disabled

show serial_port

Purpose Used to display the current serial port settings.
Syntax show serial_port
Description This command displays the current serial port settings.
Parameters None.
Restrictions None.

Example usage:

To display the serial port setting:
DGS-3427:4#show serial_port
Command: show serial_port
Baud Rate : 115200
Data Bits : 8
Parity Bits : None
Stop Bits : 1
Auto-Logout : 10 mins
DGS-3427:4#

config serial_port

Purpose
Used to configure the serial port.

Syntax
```plaintext  
config serial_port {baud_rate [9600 | 19200 | 38400 | 115200] | auto_logout [never | 2_minutes | 5_minutes | 10_minutes | 15_minutes]} (1)  
```

Description
This command is used to configure the serial port’s baud rate and auto logout settings.

Parameters
- **baud_rate [9600 | 19200 | 38400 | 115200]** – The serial bit rate that will be used to communicate with the management host. There are four options: 9600, 19200, 38400, 115200.
- **never** – No time limit on the length of time the console can be open with no user input.
- **2_minutes** – The console will log out the current user if there is no user input for 2 minutes.
- **5_minutes** – The console will log out the current user if there is no user input for 5 minutes.
- **10_minutes** – The console will log out the current user if there is no user input for 10 minutes.
- **15_minutes** – The console will log out the current user if there is no user input for 15 minutes.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure baud rate:

```plaintext  
DGS-3426:5#config serial_port baud_rate 115200  
Command: config serial_port baud_rate 115200  
Success.  
DGS-3426:5#  
```

enable clipaging

Purpose
Used to pause the scrolling of the console screen when a command displays more than one page.

Syntax
```plaintext  
enable clipaging  
```

Description
This command is used when issuing a command which causes the console screen to rapidly scroll through several pages. This command will cause the console to pause at the end of each page. The default setting is enabled.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To enable pausing of the screen display when the show command output reaches the end of the page:
disable clipaging

Purpose
Used to disable the pausing of the console screen scrolling at the end of each page when a command displays more than one screen of information.

Syntax
```
disable clipaging
```

Description
This command is used to disable the pausing of the console screen at the end of each page when a command would display more than one screen of information.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To disable pausing of the screen display when a command output reaches the end of the page:

```
DGS-3426:5#disable clipaging
Command: disable clipaging
Success.
DGS-3426:5#
```

telnet

Purpose
Specifies to instruct the Telnet client to connect to the specific Telnet server.

Syntax
```
<ipaddr> {tcp_port <value 0-65535>}
```

Description
This command will instruct the Telnet client to connect to the specific Telnet server. The parameters specified by the command will only be used for the establishment of this specific session. They will not affect other sessions.

Parameters
- **ipaddr** – The IP address of the Telnet server.
- **tcp_port** – Specifies the Telnet server port number to be connected. If not specified, the default port is 23.

Restrictions
None.

Example usage:
To enable Telnet:

```
DGS-3426:5#telnet 172.18.211.252 23 linemode
Command: telnet 172.18.211.252 23 linemode
Success
DGS-3426:5#
```
enable telnet

Purpose
Used to enable communication with and management of the Switch using the Telnet protocol.

Syntax
enable telnet <tcp_port_number 1–65535>

Description
This command is used to enable the Telnet protocol on the Switch. The user can specify the TCP or UDP port number the Switch will use to listen for Telnet requests.

Parameters
<tcp_port_number 1–65535> – The TCP port number. TCP ports are numbered between 1 and 65535. The “well-known” TCP port for the Telnet protocol is 23.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To enable Telnet and configure the port number:

```
DGS-3426:5#enable telnet 23
Command: enable telnet 23
Success.
DGS-3426:5#
```

disable telnet

Purpose
Used to disable the Telnet protocol on the Switch.

Syntax
disable telnet

Description
This command is used to disable the Telnet protocol on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To disable the Telnet protocol on the Switch:

```
DGS-3426:5#disable telnet
Command: disable telnet
Success.
DGS-3426:5#
```

enable web

Purpose
Used to enable the HTTP-based management software on the Switch.

Syntax
enable web <tcp_port_number 1–65535>

Description
This command is used to enable the Web-based management software on the Switch.

Parameters
<tcp_port_number 1–65535> – The TCP port number. TCP ports are numbered between 1 and 65535. The “well-known” port for the Web-based management software is 80.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To enable HTTP and configure port number:

```
DGS-3426:5#enable web 80
Command: enable web 80
Success.
DGS-3426:5#
```
DGS–3426:5#enable web 80
Command: enable web 80
Note: SSL will be disabled if web is enabled.
Success.
DGS–3426:5#

disable web
Purpose Used to disable the HTTP–based management software on the Switch.
Syntax disable web
Description This command disables the Web–based management software on the Switch.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:
To disable HTTP:

DGS–3426:5#disable web
Command: disable web
Success.
DGS–3426:5#

save
Purpose Used to save changes in the Switch’s configuration to non–volatile RAM.
Syntax save {{config <config_id 1–2> | log | all}}
Description This command is used to enter the current switch configuration into non–volatile RAM. The saved switch configuration will be loaded into the Switch’s memory each time the Switch is restarted.
Parameters config <config_id 1–2> – Specify to save current settings to configuration file 1 or 2.
log – Specify to save current Switch log to NV–RAM.
all – Specify to save all configuration settings. If nothing is specified after “save”, the Switch will save all.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:
To save the Switch’s current configuration to non–volatile RAM:

DGS–3426:5#save
Command: save
Saving all configurations to NV–RAM... Done.
DGS–3426:5#
reboot

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to restart the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>reboot <string></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to restart the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><string></code> – This parameter is used to perform the command without prompt if a user enters /y for yes or /n for no.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To restart the Switch:

```
DGS–3426:5#reboot
Command: reboot
Are you sure want to proceed with the system reboot? (y|n)
Please wait, the switch is rebooting...
```

reset

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to reset the Switch to the factory default settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`reset [config</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to restore the Switch’s configuration to the default settings assigned from the factory.</td>
</tr>
</tbody>
</table>
| Parameters | `config` – If the keyword ‘config’ is specified, all of the factory default settings are restored on the Switch including the IP address, user accounts, the switch history log and banner. The Switch will not save or reboot.
`system` – If the keyword ‘system’ is specified all of the factory default settings are restored on the Switch. The Switch will save and reboot after the settings are changed to default. Rebooting will clear all entries in the Forwarding Data Base.
If no parameter is specified, the Switch’s current IP address, user accounts, the switch history log and banner are not changed. All other parameters are restored to the factory default settings. The Switch will not save or reboot.
`<string>` - This parameter is used to perform the command without prompt if a user enters /y for yes or /n for no. |
| Restrictions | Only Administrator-level users can issue this command. |

Example usage:

To restore all of the Switch’s parameters to their default values:

```
DGS–3426:5#reset config
Command: reset config
Are you sure to proceed with system reset except Stacking Information, IP address, log, user account and banner?(y/n)y
Success.
DGS–3426:5#
```
login

Purpose
Used to log in a user to the Switch's console.

Syntax
```
login
```

Description
This command is used to initiate the login procedure. The user will be prompted for a Username and Password.

Parameters
None.

Restrictions
None.

Example usage:
To initiate the login procedure:

```
DGS-3426:5#login
Command: login
UserName:
```

create trusted_host

Purpose
Used to create the trusted host.

Syntax
```
create trusted_host [<ipaddr> | network <network_address>]
```

Description
This command creates the trusted host. The Switch allows specification of up to four IP addresses that are allowed to manage the Switch via in-band SNMP or Telnet-based management software. These IP addresses must be members of the Management VLAN. If no IP addresses are specified, then there is nothing to prevent any IP address from accessing the Switch, provided the user knows the Username and Password.

Parameters
- `<ipaddr>` – The IP address of the trusted host to be created.
- `<network_address>` – The network address of the trusted network. The form of network address is `xxx.xxx.xxx.xxx/y`.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create a trusted host:

```
DGS-3426:5#create trusted_host network 10.23.23.23/8
Command: create trusted_host network 10.23.23.23/8
Success.
DGS-3426:5#
```

show trusted_host

Purpose
Used to display a list of trusted hosts entered on the Switch using the `create trusted_host` command above.

Syntax
```
show trusted_host {<network_address>}
```

Description
This command is used to display a list of trusted hosts entered on the Switch using the `create trusted_host` command above.

Parameters
- `<network_address>` – The network address of the trusted host to be viewed.

Restrictions
None.

Example usage:
To display the list of trusted hosts:

```
DGS-3426:5#show trusted_host
```

DGS-3426:5#show trusted_host
Command: show trusted_host

Management Stations
IP Address

10.0.0.0/8
Total Entries: 1

DGS-3426:5#

delete trusted_host

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a trusted host entry made using the <code>create trusted_host</code> command above.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete trusted_host [ipaddr [ipaddr <ipaddr></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a trusted host entry made using the <code>create trusted_host</code> command above.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><ipaddr></code> – The IP address of the trusted host. <network_address> – The network address of the trusted network. <all> – Delete all trusted hosts.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete a trusted host with an IP address 10.48.74.121:

```
DGS-3426:5#delete trusted_host ipaddr 10.48.74.121
Command: delete trusted_host 10.48.74.121
Success.
DGS-3426:5#
```

logout

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to log out a user from the Switch’s console.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>logout</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command terminates the current user’s session on the Switch’s console.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To terminate the current user’s console session:

```
DGS-3426:5#logout
```
The switch port commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>show ports</td>
<td>{ <portlist> } { [description</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

config ports

- **Purpose**: Used to configure the Switch’s Ethernet port settings.
- **Syntax**:
  ```
  [ <portlist> | all ] {medium_type [fiber | copper]} {speed [auto {capability_advertised {10_half | 10_full | 100_half | 100_full | 1000_full} (1) } | 10_half | 10_full | 100_half | 100_full | 1000_full { [master | slave]} | auto_negotiation restart_an | flow_control [enable | disable] | learning [enable | disable] | state [enable | disable] | [description <desc 1-32> | clear_description] (1)
  ```
- **Description**: This command allows for the configuration of the Switch’s Ethernet ports. Only the ports listed in the `<portlist>` will be affected.
- **Parameters**
 - `<portlist>` – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
 - `medium_type [fiber | copper]` – This applies only to the Combo ports. If configuring the Combo ports this defines the type of transport medium used.
 - `speed` – Allows the user to adjust the speed for a port or range of ports. The user has a choice of the following:
 - `auto` – Enables auto-negotiation for the specified range of ports.
 - `capability advertised` – Configures the capability that advertises to the link partner to determine the fastest available auto setting.
 - `[10 | 100 | 1000]` – Configures the speed in Mbps for the specified range of ports. Gigabit ports are statically set to 1000 and cannot be set to slower speeds.
 - `[half | full]` – Configures the specified range of ports as either full-duplex or half-duplex.
 - `[master | slave]` – The master setting (1000M/Full_M) will allow the port to advertise capabilities related to duplex, speed and physical layer type. The master setting will also determine the master and slave relationship between the two connected physical layers. The master setting is necessary for establishing the timing control between the two physical layers. The timing control is set on a master physical layer by a local source. The slave setting (1000M/Full_S) uses loop timing, where the timing comes form a data stream received from the master. If one connection is set for 1000M/Full_M, the other side of the connection must be set for 1000M/Full_S. Any other configuration will result in a link down status for both ports.

- `auto_negotiation`:
 - `restart_an` – Restarts the auto-negotiation process.
 - `flow_control [enable | disable]` – Enables or disables flow control on the specified ports.
 - `learning [enable | disable]` – Enables or disables learning on the specified ports.
 - `state [enable | disable]` – Enables or disables the state of the specified ports.
 - `description <desc 1-32>` – Configures a description for the specified ports.
 - `clear_description` – Clears the description for the specified ports.
config ports

- **auto_negotiation restart_an** - Restart the auto-negotiation process.
- **flow_control [enable | disable]** – Enable or disable flow control for the specified ports.
- **learning [enable | disable]** – Enables or disables the MAC address learning on the specified range of ports.
- **state [enable | disable]** – Enables or disables the specified range of ports.
- **description <desc 32>** – Enter an alphanumeric string of no more than 32 characters to describe a selected port interface.
- **clear_description** – Enter this command to clear the port description of the selected port(s).

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the speed of port 3 of switch 1 to be 10 Mbps, full duplex, with learning and state enabled:

```
DGS-3426P:5#config ports 1:1-1:3 speed 10_full learning enable flow_control enable
Command: config ports 1:1-1:3 speed 10_full learning enable flow_control enable
Success.
DGS-3426P:5#
```

show ports

Purpose

Used to display the current configuration of a range of ports.

Syntax

```
show ports {<portlist>} { [ description | err_disabled | auto_negotiation | details | media_type ] }
```

Description

This command is used to display the current configuration of a range of ports.

Parameters

- **<portlist>** – Specifies a port or range of ports to be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- **description** – Adding this parameter to the `show ports` command indicates that a previously entered port description will be included in the display.
- **err_disabled** – Use this to list disabled ports including connection status and reason for being disabled.
- **auto_negotiation** – Indicate if port auto negotiation information will be included in the display.
- **details** – Indicates if port detail information will be included in the display.
- **media_type** – Specifies to display the port transceiver type.

Restrictions

None.

Example usage:

To display the configuration of all ports on the switch:

```
DGS-3426P:5#show ports
```
DGS-3426:5#show ports

Command: show ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Port State</th>
<th>Settings Speed/Duplex/FlowCtrl</th>
<th>Connection Speed/Duplex/FlowCtrl</th>
<th>Address Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:2</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:3</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:4</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:5</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:6</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:7</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>1000M/Full/None</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:8</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:9</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:10</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:11</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:12</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:13</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:14</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:15</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>100M/Full/None</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:16</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:17</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:18</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:19</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Example usage:

To display the description of all ports on switch one:
DGS-3426:5#show ports description

Command: show ports description

<table>
<thead>
<tr>
<th>Port</th>
<th>Port State</th>
<th>Settings Speed/Duplex/FlowCtrl</th>
<th>Connection Speed/Duplex/FlowCtrl</th>
<th>Address Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:2</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:3</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:4</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:5</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:6</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:7</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>1000M/Full/None</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:8</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
<tr>
<td>1:9</td>
<td>Enabled</td>
<td>Auto/Disabled</td>
<td>Link Down</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

CTRL+C ESC q Quit SPACE n Next Page p Previous Page r Refresh
PORT SECURITY COMMANDS

The Switch’s port security commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config port_security ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>delete port_security_entry</td>
<td>vlan name <vlan_name 32> port <port> mac_address <macaddr></td>
</tr>
<tr>
<td>clear port_security_entry</td>
<td>port <portlist></td>
</tr>
<tr>
<td>show port_security</td>
<td>{ports <portlist>}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

config port_security ports

Purpose

Used to configure port security settings.

Syntax

```
cfgport_security ports [<portlist> | all] {admin_state [enable| disable] | max_learning_addr <max_lock_no 0–16> | lock_address_mode [Permanent | DeleteOnTimeout | DeleteOnReset]} (1)
```

Description

This command allows for the configuration of the port security feature. Only the ports listed in the `<portlist>` are affected.

Parameters

- **portlist** – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

- **all** – Configure port security for all ports on the Switch.

- **admin_state [enable | disable]** – Enable or disable port security for the listed ports.

- **max_learning_addr <max_lock_no 0–16>** – Use this to limit the number of MAC addresses dynamically learned in the FDB for the ports.

- **lock_address_mode [Permanent | DeleteOnTimeout | DeleteOnReset]** – Indicates the method of locking addresses. The user has three choices:

 - **Permanent** – The locked addresses will not age out after the aging timer expires or the switch restarts.

 - **DeleteOnTimeout** – The locked addresses will age out after the aging timer expires.

 - **DeleteOnReset** – The locked addresses will not age out until the Switch has been reset or restarted.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure port security:
DGS-3426:5# config port_security ports 1:1-1:5 admin_state enable max_learning_addr 5 lock_address_mode DeleteOnReset
Command: config port_security ports 1:1-1:5 admin_state enable max_learning_addr 5 lock_address_mode DeleteOnReset
Success.
DGS-3426:5#

delete port_security_entry

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a port security entry by MAC address, port number and VLAN ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>delete port_security_entry_vlan_name <vlan_name 32> port <port> mac_address <macaddr></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a single, previously learned port security entry by port, VLAN name, and MAC address. This command will only take effect if the lock address mode set using the config port_security ports command is set as permanent or delete on reset.</td>
</tr>
<tr>
<td>Parameters</td>
<td>vlan name <vlan_name 32> – Enter the corresponding VLAN name of the port to delete. port <port> – Enter the port number which has learned the previously entered MAC address. The port is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. mac_address <macaddr> – Enter the corresponding MAC address, previously learned by the port, to delete.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete a port security entry:

DGS-3426:5# delete port_security_entry vlan_name default port 1:6 mac_address 00-01-30-10-2C-C7
Command: delete port_security_entry vlan_name default port 1:6 mac_address 00-01-30-10-2C-C7
Success.
DGS-3426:5#
clear port_security_entry

Purpose
Used to clear MAC address entries learned from a specified port for the port security function.

Syntax
clear port_security_entry port <portlist>

Description
This command is used to clear MAC address entries which were learned by the Switch by a specified port. This command only relates to the port security function. This command will only take effect if the lock address mode set using the `config port_security ports` command is set as permanent or delete on reset.

Parameters

<portlist> – Specifies a port or port range to clear. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To clear a port security entry by port:

```
DGS-3426:5# clear port_security_entry port 1:6
Command: clear port_security_entry port 1:6
Success.
```

show port_security

Purpose
Used to display the current port security configuration.

Syntax
show port_security {ports <portlist>}

Description
This command is used to display port security information of the Switch’s ports. The information displayed includes port security, admin state, maximum number of learning address and lock mode.

Parameters

<portlist> – Specifies a port or range of ports to be viewed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
None.

Example usage:

To display the port security configuration:
DGS-3426:5#show port_security ports 1:1-1:5
Command: show port_security ports 1:1-1:5

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin State</th>
<th>Max. Learning Addr.</th>
<th>Lock Address Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disabled</td>
<td>1</td>
<td>DeleteOnReset</td>
</tr>
<tr>
<td>2</td>
<td>Disabled</td>
<td>1</td>
<td>DeleteOnReset</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>1</td>
<td>DeleteOnReset</td>
</tr>
<tr>
<td>4</td>
<td>Disabled</td>
<td>1</td>
<td>DeleteOnReset</td>
</tr>
<tr>
<td>5</td>
<td>Disabled</td>
<td>1</td>
<td>DeleteOnReset</td>
</tr>
</tbody>
</table>
STacking Commands

The stacking configuration commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config box_priority</td>
<td>current_box_id <value 1–12> priority <value 1–63></td>
</tr>
<tr>
<td>config box_id</td>
<td>current_box_id <value 1–12> new_box_id [auto</td>
</tr>
<tr>
<td>show stack_information</td>
<td></td>
</tr>
<tr>
<td>config stacking mode</td>
<td>[disable</td>
</tr>
<tr>
<td>show stacking mode</td>
<td></td>
</tr>
<tr>
<td>show stack_device</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

config box_priority

Purpose

Used to configure box priority, which determines which box becomes the priority master. Lower numbers denote a higher priority.

Syntax

```
config box_priority {current_box_id <value 1–12> priority <value 1–63>}
```

Description

This command configures box (switch) priority.

Parameters

- `current_box_id` <value 1–12> – Identifies the Switch being configured. Range is 1–12.
- `priority` <value 1–63> – Assigns a priority value to the box, with lower numbers having higher priority. The possible priority range is 1–63. This field is important when the stacking mode is automatically configured. Users who wish a certain switch become the primary master of the switch stack should configure their choice for the priority master switch to have the highest priority (and in essence the lowest number).

Restrictions

Only Administrator and Operator-level users can issue this command.

Usage example:

To configure box priority:

```
DGS-3426:5#config box_priority current_box_id 1 priority 1
Command: config box_priority current_box_id 1 priority 1
Success.
DGS-3426:5#
```

config box_id

Purpose

Used to configure box ID. Users can use this command to reassign box IDs.

Syntax

```
config box_id {current_box_id <value 1–12> new_box_id [auto | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12]}
```

Description

This command will assign box IDs to switches in a stack.

Parameters

- `current_box_id` – Identifies the Switch being configured. Range is 1–12.
- `new_box_id` – The new ID being assigned to the Switch (box). Range is 1–12.
 - `auto` – Allows the box ID to be assigned automatically.

Restrictions

Only Administrator and Operator-level users can issue this command.
Usage example:

To change a box ID:

```
DGS-3426:5#config box_id current_box_id 1 new_box_id 2
Command: config box_id current_box_id 1 new_box_id 2
Success.
DGS-3426:5#
```

show stack_information

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the stack information table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show stack_information</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command display stack information.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Usage example:

To display stack information:

```
DGS-3426:5#show stack_information
Command: show stack_information

Topology :Duplex_Chain
My Box ID :1
Master ID :1
BK Master ID :1
Box Count :1

<table>
<thead>
<tr>
<th>Box User ID</th>
<th>Set</th>
<th>Type</th>
<th>Priority</th>
<th>Exist</th>
<th>MAC Addr</th>
<th>Prom Version</th>
<th>Runtime Version</th>
<th>H/W Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUTO</td>
<td>DGS-3426</td>
<td>Exist</td>
<td>32</td>
<td>00-19-5B-3D-7C-D6</td>
<td>1.00-B13</td>
<td>2.60-B26</td>
<td>A2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>Not_Exist</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

CTRL+C ESC a Quit SPACE a Next Page ENTER Next Entry a All
config stacking mode

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the stacking mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config stacking mode [disable</td>
</tr>
<tr>
<td>Description</td>
<td>This command will enable or disable the stacking mode for the switch. When enabled, the 10G ports on the rear of the switch will be enabled for stacking.</td>
</tr>
<tr>
<td>Parameters</td>
<td>`enable</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

NOTE: Only ports 26 and 27 of the DGS–3427 support stacking. Port 25 cannot be used for stacking, and is to be used only as a 10–Gigabit uplink port.

Usage example:

To disable the stacking mode:

```
DGS-3426:5#config stacking mode disable
Command: config stacking mode disable
Change Box bootmode may cause devices work restart, still continue? (y/n)y
```

show stacking mode

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to view the current stacking mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show stacking mode</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command will display whether the current stacking mode is enabled or disabled.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Usage example:

To view the current stacking mode:

```
DGS-3426:5#show stacking mode
Command: show stacking mode
Stacking mode : Enabled
DGS-3426:5#
```

show stack_device

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the information for stacking devices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show stack_device</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command will display stack device information.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>
Usage example:

To display the stacking devices:

```
DGS-3426:5#show stack_device
Command: show stack_device

<table>
<thead>
<tr>
<th>Box ID</th>
<th>Box Type</th>
<th>H/W Version</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>DGS-3426</td>
<td>2A1G</td>
<td>avc</td>
</tr>
</tbody>
</table>
```

DGS-3426:5#
The network management commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

The xStack® DGS–3400 Series supports the Simple Network Management Protocol (SNMP) versions 1, 2c, and 3. Users may specify which version of SNMP to use to monitor and control the Switch. Three versions of SNMP vary in the level of security provided between the management station and the network device. The following table lists the security features of the three SNMP versions:

<table>
<thead>
<tr>
<th>SNMP Version</th>
<th>Authentication Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>Community String</td>
<td>Community String is used for authentication – NoAuthNoPriv</td>
</tr>
<tr>
<td>v2c</td>
<td>Community String</td>
<td>Community String is used for authentication – NoAuthNoPriv</td>
</tr>
<tr>
<td>v3</td>
<td>Username</td>
<td>Username is used for authentication – NoAuthNoPriv</td>
</tr>
<tr>
<td>v3</td>
<td>MD5 or SHA</td>
<td>Authentication is based on the HMAC–MD5 or HMAC–SHA algorithms – AuthNoPriv</td>
</tr>
<tr>
<td>v3</td>
<td>MD5 DES or SHA DES</td>
<td>Authentication is based on the HMAC–MD5 or HMAC–SHA algorithms – AuthPriv. DES 56–bit encryption is added based on the CBC–DES (DES–56) standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable snmp</td>
<td></td>
</tr>
<tr>
<td>disable snmp</td>
<td></td>
</tr>
<tr>
<td>enable snmp linkchange_traps</td>
<td></td>
</tr>
<tr>
<td>disable snmp linkchange_traps</td>
<td></td>
</tr>
<tr>
<td>config snmp linkchange_traps ports</td>
<td>[all</td>
</tr>
<tr>
<td>delete snmp user</td>
<td><username 32></td>
</tr>
<tr>
<td>show snmp user</td>
<td></td>
</tr>
<tr>
<td>create snmp view</td>
<td><view_name 32> <oid> view_type [included</td>
</tr>
<tr>
<td>delete snmp view</td>
<td><view_name 32> [all</td>
</tr>
<tr>
<td>show snmp view</td>
<td><view_name 32></td>
</tr>
<tr>
<td>create snmp community</td>
<td><community_string 32> view <view_name 32> [read_only</td>
</tr>
<tr>
<td>delete snmp community</td>
<td><community_string 32></td>
</tr>
<tr>
<td>show snmp community</td>
<td><community_string 32></td>
</tr>
<tr>
<td>config snmp engineID</td>
<td><snmp_engineID 10–64></td>
</tr>
<tr>
<td>show snmp engineID</td>
<td></td>
</tr>
<tr>
<td>create snmp group</td>
<td><groupname 32> [v1</td>
</tr>
</tbody>
</table>
Command Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete snmp group</td>
<td><groupname 32></td>
</tr>
<tr>
<td>show snmp groups</td>
<td></td>
</tr>
<tr>
<td>create snmp</td>
<td>[host <ipaddr></td>
</tr>
<tr>
<td>delete snmp</td>
<td>[host <ipaddr></td>
</tr>
<tr>
<td>show snmp host</td>
<td>(<ipaddr>)</td>
</tr>
<tr>
<td>show snmp v6host</td>
<td>(<ipv6addr>)</td>
</tr>
<tr>
<td>enable snmp traps</td>
<td></td>
</tr>
<tr>
<td>enable snmp authenticate traps</td>
<td></td>
</tr>
<tr>
<td>show snmp traps</td>
<td>{ linkchange_traps { ports <portlist>}}</td>
</tr>
<tr>
<td>disable snmp traps</td>
<td></td>
</tr>
<tr>
<td>disable snmp authenticate traps</td>
<td></td>
</tr>
<tr>
<td>config snmp system_contact</td>
<td><sw_contact></td>
</tr>
<tr>
<td>config snmp system_location</td>
<td><sw_location></td>
</tr>
<tr>
<td>config snmp system_name</td>
<td><sw_name></td>
</tr>
<tr>
<td>enable rmon</td>
<td></td>
</tr>
<tr>
<td>disable rmon</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

enable snmp

Purpose
Used to enable the SNMP function on the Switch.

Syntax
```markdown
enable snmp
```

Description
This command is used to enable Simple Network Management Protocol (SNMP) on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To enable SNMP:

```
DGS-3426:5#enable snmp
Command: enable snmp
Success.
DGS-3426:5#
```
disable snmp

Purpose
Used to disable SNMP on the Switch.

Syntax
`disable snmp`

Description
This command is used to disable the Simple Network Management Protocol (SNMP) on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To disable SNMP:

```
DGS-3426:5#disable snmp
Command: disable snmp
Success.
DGS-3426:5#
```

enable snmp linkchange_traps

Purpose
Used to enable SNMP linkchange traps on the Switch.

Syntax
`enable snmp linkchange_traps`

Description
This command is used to enable and disable SNMP linkchange traps on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To enable SNMP linkchange traps:

```
DGS-3426:5#enable snmp linkchange_traps
Command: enable snmp linkchange_traps
Success.
DGS-3426:5#
```

disable snmp linkchange_traps

Purpose
Used to disable SNMP linkchange traps on the Switch.

Syntax
`disable snmp linkchange_traps`

Description
This command is used to disable SNMP linkchange traps on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To disable SNMP linkchange traps:

```
DGS-3426:5#disable snmp linkchange_traps
Command: disable snmp linkchange_traps
Success.
DGS-3426:5#
```
config snmp linkchange_traps

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure SNMP linkchange traps on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config snmp linkchange_traps ports [all]<portlist>[enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure SNMP linkchange traps on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>all – Configure all ports on the Switch.</td>
</tr>
<tr>
<td></td>
<td><portlist> – Specifies a port or range of ports to be configured. The beginning and end of the port list range are separated by a dash. Non-contiguous portlist entries are separated by a comma. (ex: 1-3,7-9).</td>
</tr>
<tr>
<td></td>
<td>enable</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure SNMP linkchange traps on every port:

```
DGS-3426:5#config snmp linkchange_traps ports all enable
Command: config snmp linkchange_traps ports all enable
Success.
DGS-3426:5#
```
create snmp user

Purpose
Used to create a new SNMP user and adds the user to an SNMP group that is also created by this command.

Syntax
```
create snmp user <username 32> <groupname 32> {encrypted [by_password auth
[md5 <auth_password 8–16> | sha <auth_password 8–20>] priv [none | des
<priv_password 8–16>] | by_key auth [md5 <auth_key 32–32> | sha <auth_key 40–
40>] priv [none | des <priv_key 32–32>]]}
```

Description
The `create snmp user` command creates a new SNMP user and adds the user to an SNMP group that is also created by this command. SNMP ensures:

- **Message integrity** – Ensures that packets have not been tampered with during transit.
- **Authentication** – Determines if an SNMP message is from a valid source.
- **Encryption** – Scrambles the contents of messages to prevent it from being viewed by an unauthorized source.

Parameters
- `<username 32>` – An alphanumeric name of up to 32 characters that will identify the new SNMP user.
- `<groupname 32>` – An alphanumeric name of up to 32 characters that will identify the SNMP group the new SNMP user will be associated with.
- `encrypted` – Allows the user to choose a type of authorization for authentication using SNMP. The user may choose:
 - `by_password` – Requires the SNMP user to enter a password for authentication and privacy. The password is defined by specifying the `auth_password` below. This method is recommended.
 - `by_key` – Requires the SNMP user to enter an encryption key for authentication and privacy. The key is defined by specifying the key in hex form below. This method is not recommended.
- `auth` – The user may also choose the type of authentication algorithms used to authenticate the snmp user. The choices are:
 - `md5` – Specifies that the HMAC–MD5–96 authentication level will be used. `md5` may be utilized by entering one of the following:
 - `<auth_password 8–16>` – An alphanumeric string of between 8 and 16 characters that will be used to authorize the agent to receive packets for the host.
 - `<auth_key 32–32>` – Enter an alphanumeric string of exactly 32 characters, in hex form, to define the key that will be used to authorize the agent to receive packets for the host.
 - `sha` – Specifies that the HMAC–SHA–96 authentication level will be used.
 - `<auth_password 8–20>` – An alphanumeric string of between 8 and 20 characters that will be used to authorize the agent to receive packets for the host.
 - `<auth_key 40–40>` – Enter an alphanumeric string of exactly 40 characters, in hex form, to define the key that will be used to authorize the agent to receive packets for.
- `priv` – Adding the `priv` (privacy) parameter will allow for encryption in addition to the authentication algorithm for higher security. The user may choose:
 - `des` – Adding this parameter will allow for a 56–bit encryption to be added using the DES–56 standard using:
 - `<priv_password 8–16>` – An alphanumeric string of between 8 and 16 characters that will be used to encrypt the contents of messages the host sends to the agent.
 - `<priv_key 32–32>` – Enter an alphanumeric key string of exactly 32 characters, in hex form, that will be used to encrypt the contents of messages the host sends to the agent.
 - `none` – Adding this parameter will add no encryption.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create an SNMP user on the Switch:
create snmp user dlink default encrypted by_password auth md5 canadian priv none
Command: create snmp user dlink default encrypted by_password auth md5 canadian priv none
Success.

delete snmp user

Purpose
Used to remove an SNMP user from an SNMP user table.

Syntax
delete snmp user <username 32>

Description
This command is used to remove an SNMP user from its SNMP group and then deletes the associated SNMP group.

Parameters
<username 32> – An alphanumeric string of up to 32 characters that identifies the SNMP user that will be deleted.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To delete a previously entered SNMP user on the Switch:

DGS-3426:5#delete snmp user dlink
Command: delete snmp user dlink
Success.
DGS-3426:5#

show snmp user

Purpose
Used to display information about each SNMP username in the SNMP username table.

Syntax
show snmp user

Description
This command is used to display information about each SNMP username in the SNMP username table.

Parameters
None.

Restrictions
None.

Example usage:
To display the SNMP users currently configured on the Switch:

DGS-3426:5#show snmp user
Command: show snmp user

<table>
<thead>
<tr>
<th>Username</th>
<th>Group Name</th>
<th>VerAuthPriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>u3</td>
<td>g3</td>
<td>V3 NoneNone</td>
</tr>
<tr>
<td>initial</td>
<td>initial</td>
<td>V3 NoneNone</td>
</tr>
</tbody>
</table>

Total Entries: 2

DGS-3426:5#
create snmp view

Purpose
Used to assign views to community strings to limit which MIB objects and SNMP manager can access.

Syntax
```plaintext
create snmp view <view_name 32> <oid> view_type [included | excluded]
```

Description
This command is used to assign views to community strings to limit which MIB objects an SNMP manager can access.

Parameters
- `<view_name 32>` – An alphanumeric string of up to 32 characters that identifies the SNMP view to be created.
- `<oid>` – The object ID that identifies an object tree (MIB tree) that will be included or excluded from access by an SNMP manager.
- `view_type` – Sets the view type to be:
 - `included` – Include this object in the list of objects that an SNMP manager can access.
 - `excluded` – Exclude this object from the list of objects that an SNMP manager can access.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create an SNMP view:

```
DGS-3426:5# create snmp view dlinkview 1.3.6 view_type included
Command: create snmp view dlinkview 1.3.6 view_type included
Success.
DGS-3426:5#
```

delete snmp view

Purpose
Used to remove an SNMP view entry previously created on the Switch.

Syntax
```plaintext
delete snmp view <view_name 32> [all | <oid>]
```

Description
This command is used to remove an SNMP view previously created on the Switch.

Parameters
- `<view_name 32>` – An alphanumeric string of up to 32 characters that identifies the SNMP view to be deleted.
- `all` – Specifies that all of the SNMP views on the Switch will be deleted.
- `<oid>` – The object ID that identifies an object tree (MIB tree) that will be deleted from the Switch.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete a previously configured SNMP view from the Switch:

```
DGS-3426:5# delete snmp view dlinkview all
Command: delete snmp view dlinkview all
Success.
DGS-3426:5#
```
show snmp view

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display an SNMP view previously created on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show snmp view {<view_name 32>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display an SNMP view previously created on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><view_name 32></code> – An alphanumeric string of up to 32 characters that identifies the SNMP view that will be displayed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display SNMP view configuration:

```
UserName:
PassWord:

DGS-3426P:4# show snmp view
Command: show snmp view

Vacm View Table Settings
View Name                  Subtree                      View Type
––––––––––––––––––––     –––––––––––––––––––––––         ––––––––––
v3v                        1                               Included
restricted                 1.3.6.1.2.1.1                   Included
restricted                 1.3.6.1.2.1.11                  Included
restricted                 1.3.6.1.6.3.10.2.1              Included
restricted                 1.3.6.1.6.3.11.2.1              Included
restricted                 1.3.6.1.6.3.15.1.1              Included
CommunityView              1                               Included
CommunityView              1.3.6.1.6.3                     Excluded
CommunityView              1.3.6.1.6.3.1                   Included

Total Entries: 9

DGS-3426P:4#
```
create snmp community

Purpose
Used to create an SNMP community string to define the relationship between the SNMP manager and an agent. The community string acts like a password to permit access to the agent on the Switch. One or more of the following characteristics can be associated with the community string:

- An Access List of IP addresses of SNMP managers that are permitted to use the community string to gain access to the Switch’s SNMP agent.
- An MIB view that defines the subset of all MIB objects that will be accessible to the SNMP community.

read_write or **read_only** level permission for the MIB objects accessible to the SNMP community.

Syntax
create snmp community <community_string 32> view <view_name 32> [read_only | read_write]

Description
This command is used to create an SNMP community string and to assign access-limiting characteristics to this community string.

Parameters
- `<community_string 32>` – An alphanumeric string of up to 32 characters that is used to identify members of an SNMP community. This string is used like a password to give remote SNMP managers access to MIB objects in the Switch’s SNMP agent.
- `<view_name 32>` – An alphanumeric string of up to 32 characters that is used to identify the group of MIB objects that a remote SNMP manager is allowed to access on the Switch.
- **read_only** – Specifies that SNMP community members using the community string created with this command can only read the contents of the MIBs on the Switch.
- **read_write** – Specifies that SNMP community members using the community string created with this command can read from and write to the contents of the MIBs on the Switch.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create the SNMP community string “dlink:”

```
DGS-3426:5#create snmp community dlink view ReadView read_write
Command: create snmp community dlink view ReadView read_write
Success.
DGS-3426:5#
```

delete snmp community

Purpose
Used to remove a specific SNMP community string from the Switch.

Syntax
delete snmp community <community_string 32>

Description
This command is used to remove a previously defined SNMP community string from the Switch.

Parameters
- `<community_string 32>` – An alphanumeric string of up to 32 characters that is used to identify members of an SNMP community. This string is used like a password to give remote SNMP managers access to MIB objects in the Switch’s SNMP agent.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete the SNMP community string “dlink:”

```
DGS-3426:5#delete snmp community dlink
Command: delete snmp community dlink
Success.
DGS-3426:5#
```
DGS-3426:5#delete snmp community dlink
Command: delete snmp community dlink
Success.
DGS-3426:5#

show snmp community

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display SNMP community strings configured on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show snmp community <community_string 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display SNMP community strings that are configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><community_string 32> – An alphanumeric string of up to 32 characters that is used to identify members of an SNMP community. This string is used like a password to give remote SNMP managers access to MIB objects in the Switch’s SNMP agent.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the currently entered SNMP community strings:

DGS-3426P:4#show snmp community
Command: show snmp community

SNMP Community Table
Community Name View Name Access Right
––––––––––––––––– ––––––––––––––––– ––––––––––––
private CommunityView read_write
public CommunityView read_only

Total Entries: 2
DGS-3426P:4#

config snmp engineID

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure an identification for the SNMP engine on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config snmp engineID <snmp_engineID 10–64></td>
</tr>
<tr>
<td>Description</td>
<td>This command configures a name for the SNMP engine on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><snmp_engineID 10–64> – An alphanumeric string that will be used to identify the SNMP engine on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To give the SNMP agent on the Switch the name “0035636666”:

DGS-3426:5#config snmp engineID 0035636666
Command: config snmp engineID 0035636666
Success.
DGS-3426:5#
show snmp engineID

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the identification of the SNMP engine on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show snmp engineID</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command displays the identification of the SNMP engine on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the current name of the SNMP engine on the Switch:

```plaintext
DGS-3426:5# show snmp engineID
Command: show snmp engineID
SNMP Engine ID : 0035636666
DGS-3426:5#
```

create snmp group

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create a new SNMP group, or a table that maps SNMP users to SNMP views.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`create snmp group <groupname 32> [v1</td>
</tr>
<tr>
<td>Description</td>
<td>This command creates a new SNMP group, or a table that maps SNMP users to SNMP views.</td>
</tr>
</tbody>
</table>
| Parameters | <groupname 32> – An alphanumeric name of up to 32 characters that will identify the SNMP group the new SNMP user will be associated with.
| | v1 – Specifies that SNMP version 1 will be used. The Simple Network Management Protocol (SNMP), version 1, is a network management protocol that provides a means to monitor and control network devices.
| | v2c – Specifies that SNMP version 2c will be used. The SNMP v2c supports both centralized and distributed network management strategies. It includes improvements in the Structure of Management Information (SMI) and adds some security features.
| | v3 – Specifies that the SNMP version 3 will be used. SNMP v3 provides secure access to devices through a combination of authentication and encrypting packets over the network. SNMP v3 adds:
| | • Message integrity – Ensures that packets have not been tampered with during transit.
| | • Authentication – Determines if an SNMP message is from a valid source.
| | • Encryption – Scrambles the contents of messages to prevent it being viewed by an unauthorized source.
| | noauth_nopriv – Specifies that there will be no authorization and no encryption of packets sent between the Switch and a remote SNMP manager.
| | auth_nopriv – Specifies that authorization will be required, but there will be no encryption of packets sent between the Switch and a remote SNMP manager.
| | auth_priv – Specifies that authorization will be required, and that packets sent between the Switch and a remote SNMP manager will be encrypted.
| | read_view – Specifies that the SNMP group being created can request SNMP messages.
| | write_view – Specifies that the SNMP group being created has write privileges.
| | notify_view – Specifies that the SNMP group being created can receive SNMP trap messages generated by the Switch’s SNMP agent.
| | <view_name 32> – An alphanumeric string of up to 32 characters that is used to identify the group of MIB objects that a remote SNMP manager is allowed to access on the Switch. |
create snmp group

Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:

To create an SNMP group named “sg1:”

```
DGS-3426:5#create snmp group sg1 v3 noauth_nopriv read_view v1 write_view v1 notify_view v1
Command: create snmp group sg1 v3 noauth_nopriv read_view v1 write_view v1 notify_view v1
Success.
DGS-3426:5#
```

delete snmp group

Purpose Used to remove an SNMP group from the Switch.

Syntax `delete snmp group <groupname 32>`

Description This command is used to remove an SNMP group from the Switch.

Parameters `<groupname 32>` – An alphanumeric name of up to 32 characters that will identify the SNMP group the new SNMP user will be associated with.

Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:

To delete the SNMP group named “sg1”.

```
DGS-3426:5#delete snmp group sg1
Command: delete snmp group sg1
Success.
DGS-3426:5#
```

show snmp groups

Purpose Used to display the group–names of SNMP groups currently configured on the Switch. The security model, level, and status of each group are also displayed.

Syntax `show snmp groups`

Description This command displays the group–names of SNMP groups currently configured on the Switch. The security model, level, and status of each group are also displayed.

Parameters None.

Restrictions None.

Example usage:

To display the currently configured SNMP groups on the Switch:

```
DGS-3426:5#show snmp groups
Command: show snmp groups
Vancm Access Table Settings
Group Name : initial
ReadView Name : restricted
WriteView Name :
```
<table>
<thead>
<tr>
<th>Notify View Name</th>
<th>Security Model</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>restricted</td>
<td>SNMPv3</td>
<td>NoAuthNoPriv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Name</th>
<th>ReadView Name</th>
<th>WriteView Name</th>
<th>Notify View Name</th>
<th>Security Model</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>CommunityView</td>
<td></td>
<td>CommunityView</td>
<td>SNMPv1</td>
<td>NoAuthNoPriv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>private</td>
<td>CommunityView</td>
<td></td>
<td>CommunityView</td>
<td>SNMPv1</td>
<td>NoAuthNoPriv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReadGroup</td>
<td>CommunityView</td>
<td></td>
<td>CommunityView</td>
<td>SNMPv1</td>
<td>NoAuthNoPriv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WriteGroup</td>
<td>CommunityView</td>
<td></td>
<td>CommunityView</td>
<td>SNMPv1</td>
<td>NoAuthNoPriv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Entries: 9
create snmp host

Purpose
Used to create a recipient of SNMP traps generated by the Switch’s SNMP agent.

Syntax
```
create snmp [host <ipaddr> | v6host <ipv6addr>] [v1 | v2c | v3 [noauth_nopriv | auth_nopriv | auth_priv] <auth_string 32>]
```

Description
This command creates a recipient of SNMP traps generated by the Switch’s SNMP agent.

Parameters
- **host <ipaddr>** – The IPv4 address of the remote management station that will serve as the SNMP host for the Switch.
- **v6host <ipv6addr>** – The IPv6 address of the remote management station that will serve as the SNMP host for the Switch.
- **v1** – Specifies that SNMP version 1 will be used. The Simple Network Management Protocol (SNMP), version 1, is a network management protocol that provides a means to monitor and control network devices.
- **v2c** – Specifies that SNMP version 2c will be used. The SNMP v2c supports both centralized and distributed network management strategies. It includes improvements in the Structure of Management Information (SMI) and adds some security features.
- **v3** – Specifies that the SNMP version 3 will be used. SNMP v3 provides secure access to devices through a combination of authentication and encrypting packets over the network. SNMP v3 adds:
 - Message integrity – ensures that packets have not been tampered with during transit.
 - Authentication – determines if an SNMP message is from a valid source.
 - Encryption – scrambles the contents of messages to prevent it being viewed by an unauthorized source.
- **noauth_nopriv** – Specifies that there will be no authorization and no encryption of packets sent between the Switch and a remote SNMP manager.
- **auth_nopriv** – Specifies that authorization will be required, but there will be no encryption of packets sent between the Switch and a remote SNMP manager.
- **auth_priv** – Specifies that authorization will be required, and that packets sent between the Switch and a remote SNMP manager will be encrypted.
- **<auth_string 32>** – An alphanumeric string used to authorize a remote SNMP manager to access the Switch’s SNMP agent.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create an SNMP IPv4 host to receive SNMP messages:
```
DGS-3426:5# create snmp host 10.48.74.100 v3 auth_priv public
Command: create snmp host 10.48.74.100 v3 auth_priv public
Success.
DGS-3426:5#
```

To create an SNMP IPv6 host to receive SNMP messages:
```
DGS-3426:5# create snmp v6host FF::FF v3 noauth_nopriv initial
Command: create snmp v6host FF::FF v3 noauth_nopriv initial
Success.
DGS-3426:5#
```
delete snmp host

Purpose

Used to remove a recipient of SNMP traps generated by the Switch's SNMP agent.

Syntax

```
delete snmp [host <ipaddr> | v6host <ipv6addr>]
```

Description

This command is used to delete a recipient of SNMP traps generated by the Switch's SNMP agent.

Parameters

- `host <ipaddr>` – The IPv4 address of the remote management station that will serve as the SNMP host for the Switch.
- `v6host <ipv6addr>` – The IPv6 address of the remote management station that will serve as the SNMP host for the Switch.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To delete an IPv4 SNMP host entry:

```
DGS-3426:5#delete snmp host 10.48.74.100
Command: delete snmp host 10.48.74.100
Success.
DGS-3426:5#
```

To delete an IPv6 SNMP host entry:

```
DGS-3426:5#delete snmp v6host FF::FF
Command: delete snmp v6host FF::FF
Success.
DGS-3426:5#
```

show snmp host

Purpose

Used to display the recipient of SNMP traps generated by the Switch's SNMP agent.

Syntax

```
show snmp host {<ipaddr>}
```

Description

This command is used to display the IP addresses and configuration information of remote SNMP managers that are designated as recipients of SNMP traps that are generated by the Switch's SNMP agent.

Parameters

- `<ipaddr>` – The IP address of a remote SNMP manager that will receive SNMP traps generated by the Switch's SNMP agent.

Restrictions

None.

Example usage:

To display the currently configured SNMP hosts on the Switch:

```
DGS-3426:5#show snmp host
```

show snmp v6host

Purpose
Used to display the IPv6 recipient of SNMP traps generated by the Switch's SNMP agent.

Syntax
show snmp v6host {<ipv6addr>}

Description
This command is used to display the IPv6 addresses and configuration information of remote SNMP managers that are designated as recipients of SNMP traps that are generated by the Switch's SNMP agent.

Parameters
v6host <ipv6addr> – The IPv6 address of a remote SNMP manager that will receive SNMP traps generated by the Switch's SNMP agent.

Restrictions
None.

Example usage:
To display the currently configured IPv6 SNMP hosts on the Switch:

enable snmp traps

Purpose
Used to enable SNMP trap support.

Syntax
enable snmp traps

Description
This command is used to enable SNMP trap support on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To enable SNMP trap support on the Switch:
enable snmp authenticate traps

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable SNMP authentication trap support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>enable snmp authenticate traps</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable SNMP authentication trap support on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To turn on SNMP authentication trap support:

```
DGS-3426:5#enable snmp authenticate traps
Command: enable snmp authenticate traps
Success.
```

show snmp traps

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show SNMP trap support on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show snmp traps { linkchange_traps { ports <portlist>} }</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to view the SNMP trap support status currently configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>portlist – Enter a list of ports to be displayed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To view the current SNMP trap support:

```
DGS-3426:5#show snmp traps linkchange_traps ports 1
Command: show snmp traps linkchange_traps ports 1:1

Linkchange Trap : Enabled
Port 1:1 : Enabled
```

DGS-3426:5#
disable snmp traps

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable SNMP trap support on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable snmp traps</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable SNMP trap support on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To prevent SNMP traps from being sent from the Switch:

```
DGS-3426:5#disable snmp traps
Command: disable snmp traps
Success.
DGS-3426:5#
```

disable snmp authenticate traps

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable SNMP authentication trap support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable snmp authenticate traps</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable SNMP authentication support on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the SNMP authentication trap support:

```
DGS-3426:5#disable snmp authenticate traps
Command: disable snmp authenticate traps
Success.
DGS-3426:5#
```

config snmp system_contact

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enter the name of a contact person who is responsible for the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config snmp system_contact <sw_contact></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enter the name and/or other information to identify a contact person who is responsible for the Switch. A maximum of 255 character can be used.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><sw_contact></code> – A maximum of 255 characters is allowed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the Switch contact to “MIS Department II”:

```
DGS-3426:5#config snmp system_contact MIS Department II
Command: config snmp system_contact MIS Department II
Success.
DGS-3426:5#
```
DGS-3426:5#config snmp system_contact MIS Department II
Command: config snmp system_contact MIS Department II
Success.
DGS-3426:5#

config snmp system_location

- **Purpose**: Used to enter a description of the location of the Switch.
- **Syntax**: `config snmp system_location <sw_location>`
- **Description**: This command is used to enter a description of the location of the Switch. A maximum of 255 characters can be used.
- **Parameters**: `<sw_location>` – A maximum of 255 characters is allowed.
- **Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the Switch location for “HQ 5F”:

DGS-3426:5#config snmp system_location HQ 5F
Command: config snmp system_location HQ 5F
Success.
DGS-3426:5#

config snmp system_name

- **Purpose**: Used to configure the name for the Switch.
- **Syntax**: `config snmp system_name <sw_name>`
- **Description**: This command is used to configure the name of the Switch.
- **Parameters**: `<sw_name>` – A maximum of 255 characters is allowed.
- **Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the Switch name for “DGS-3400 Switch”:

DGS-3426:5#config snmp system_name DGS-3400 Switch
Command: config snmp system_name DGS-3400 Switch
Success.
DGS-3426:5#

enable rmon

- **Purpose**: Used to enable RMON on the Switch.
- **Syntax**: `enable rmon`
- **Description**: This command is used to enable remote monitoring (RMON) on the Switch.
- **Parameters**: None.
- **Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:
To enable RMON:

```
DGS-3426:5#enable rmon
Command: enable rmon
Success.
DGS-3426:5#
```

disable rmon

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable RMON on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable rmon</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable remote monitoring (RMON) on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable RMON:

```
DGS-3426:5#disable rmon
Command: disable rmon
Success.
DGS-3426:5#
```
SWITCH UTILITY COMMANDS

The switch utility commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>download</td>
<td>[firmware_fromTFTP [<ipaddr></td>
</tr>
<tr>
<td>config firmware</td>
<td>{unit [<unitid_list 1-12]</td>
</tr>
<tr>
<td>show firmware information</td>
<td></td>
</tr>
<tr>
<td>config configuration</td>
<td><config_id 1–2> [boot_up</td>
</tr>
<tr>
<td>show config</td>
<td>[current_config</td>
</tr>
<tr>
<td>upload</td>
<td>[cfg_toTFTP [<ipaddr></td>
</tr>
<tr>
<td>clear attack_log</td>
<td>{<unit_id 1–12></td>
</tr>
<tr>
<td>show attack_log</td>
<td>{unit <unit_id 1–12>} {index <value_list>}</td>
</tr>
<tr>
<td>enable autoconfig</td>
<td></td>
</tr>
<tr>
<td>disable autoconfig</td>
<td></td>
</tr>
<tr>
<td>show autoconfig</td>
<td></td>
</tr>
<tr>
<td>ping</td>
<td><ipaddr> {times <value 0–255>} {timeout <sec 1–99>}</td>
</tr>
<tr>
<td>ping6</td>
<td><ipv6addr> {times <value 0–255}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

download

Purpose: Used to download and install new firmware or a new configuration on the switch from a TFTP server.

Syntax: `download [firmware_fromTFTP [<ipaddr> |<ipv6addr>] <path_filename 64> {image_id<int 1-2>} {unit [all|<unitid 1-12>] | cfg_fromTFTP [<ipaddr> |<ipv6addr>] <path_filename 64> [{<config_id 1-2> | increment}]]`

Description: This command is used to download a new firmware or a switch configuration file from a TFTP server. The firmware can be loaded to different images and units according to the image ID and unit ID, and you can choose to download through IPv6 if your switch supports IPv6. If the image id or the unit id does not exist in the system, the download will fail and give an error message.

Parameters:
- `firmware_fromTFTP` – Download and install new firmware on the Switch from a TFTP server.
- `cfg_fromTFTP` – Download and install a new configuration file on the Switch from a TFTP server.
 - `image_id` – Specifies the image index ID number of the firmware in the Switch’s memory. The Switch can store two firmware images for use. Image ID 1 will be the default boot up firmware for the Switch unless otherwise configured by the user.
 - `unit [all | <unitid 1–12>]` – all specifies all units (switches), `<unitid>` is the unit ID of the switch in the switch stack that will receive the download. This parameter is for downloading firmware only.
download

- `config` – Download a new configuration on the switch from a TFTP server.
- `<ipaddr>` – The IPv4 address of the TFTP server.
- `<ipv6addr>` – The IPv6 address of the TFTP server.
- `<path_filename 64>` – The DOS path and filename of the firmware or switch configuration file on the TFTP server. For example, `C:\dgs3427.had`.
- `config_id <int 1–2>` – The Switch can hold two configuration files specified by section ID. If no configuration ID is specified, the configuration being downloaded is applied to the system. If a configuration ID is specified, the configuration being downloaded is saved only to flash memory in the chosen section (1 or 2) and will not be applied to the system. Keep in mind that configuration ID 1 is the boot-up configuration unless this is changed using the config command.
- `increment` – Allows the download of a partial switch configuration file. This allows a file to be downloaded that will change only the switch parameters explicitly stated in the configuration file. All other switch parameters will remain unchanged.

Restrictions
Only Administrator-level users can issue this command.

Example usage:

To download a configuration file:

```
DGS-3426:5# download cfg_fromTFTP 10.48.74.121 unit all c:\cfg\setting.txt
Command: download cfg_fromTFTP  10.48.74.121 unit all c:\cfg\setting.txt
```

```
Connecting to server................... Done.
Download configuration................. Done.
```

```
DGS-3426:5# DGS-3426 Gigabit Ethernet Switch
DGS-3426:5## Configuration
DGS-3426:5## Firmware: Build 2.60.B26
DGS-3426:5## Copyright(C) 2009 D-Link Corporation. All rights reserved.
DGS-3426:5## STACK
DGS-3426:5# DGS-3426:5## BASIC
DGS-3426:5# DGS-3426:5## config serial_port auto_logout never
Command: config serial_port auto_logout never
```

The download configuration command will initiate the loading of the various settings in the order listed in the configuration file. When the file has been successfully loaded the message “End of configuration file for DGS–3400” appears followed by the command prompt.

```
DGS-3426:5# # ROUTE
DGS-3426:5#
DGS-3426:5# create iproute default 172.18.212.253 1
Command: create iproute default 172.18.212.253 1
```

```
Success.
```

```
DGS-3426:5#
DGS-3426:5# # End of configuration file for DGS-3426
DGS-3426:5# #
```

56
config configuration

Purpose
Used to designate a stored configuration file section ID as a boot up configuration, active configuration or to delete the configuration file.

Syntax
```
config configuration <config_id 1–2> [boot_up | delete | active]
```

Description
This command is used to configure the section ID index of a stored configuration as the boot up or active configuration, or to delete the contents of the specified configuration section.

Parameters
- `config_id` – Specifies the section being configured or deleted.
- `delete` – Entering this parameter will delete the contents of the specified section.
- `boot_up` – Entering specifies the configuration section as a boot up section.
- `active` – Entering specifies the configuration section as an active section.

Restrictions
Only Administrator-level users can issue this command.

Example usage:

To configure configuration section 1 as a boot up section:

```
DGS-3426:5# config configuration 1 boot_up
Command: config configuration 1 boot_up
Success.
DGS-3426:5#
```

config firmware

Purpose
Used to configure the firmware section as a boot up section, or to delete the firmware section.

Syntax
```
config firmware {unit [unitid_list 1-12]|all} image_id <int 1-2> [delete|boot_up]
```

Description
This command is used to configure the firmware section. The user may choose to remove the firmware section or use it as a boot up section.

Parameters
- `unit <unit_id 1–12>` – Select the switch in the switch stack for which to configure the firmware image.

 - `unitid_list`: Specifies the list of stacked units to apply the command to. This command is supported by projects which can set firmware on multiple units at a time.
 - `all`: Specifies to select all units.

 - `image_id` – Specifies the working section. The Switch can hold two firmware versions for the user to select from, which are specified by image ID.
 - `<int 1–2>` – Select the ID number of the firmware in the Switch’s memory to be configured.

 - `delete` – Entering this parameter will delete the specified firmware section.
 - `boot_up` – Entering this parameter will specify the firmware image ID as a boot up section.

Restrictions
Only Administrator-level users can issue this command.

Example usage:

To configure firmware section 1 as a boot up section:

```
DGS-3426:5# config firmware unit 1 image_id 1 boot_up
Command: config firmware unit 1 image_id 1 boot_up
Success.
DGS-3426:5#
```
DGS-3426:5# config firmware image_id 1 boot_up
Command: config firmware image_id 1 boot_up
Success.
DGS-3426:5#

show firmware information

Purpose
Used to display the firmware section information.

Syntax
show firmware information

Description
This command is used to display the firmware section information.

Parameters
None.

Restrictions
None.

Example usage:

To display the current firmware information on the Switch:

```
DGS-3426P:5# show firmware information
Command: show firmware information

<table>
<thead>
<tr>
<th>Box ID</th>
<th>Version</th>
<th>Size(B)</th>
<th>Update Time</th>
<th>From</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*1</td>
<td>2.60.B26</td>
<td>3763691</td>
<td>2009/03/05</td>
<td>10:23:40</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(empty)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'*' means boot up firmware
(R) means firmware update through Serial Port(RS232)
(T) means firmware update through TELNET
(S) means firmware update through SNMP
(W) means firmware update through WEB
(SIM) means firmware update through Single IP Management
```

DGS-3426P:5#
show config

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current or saved version of the configuration settings of the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show config [current_config</td>
</tr>
<tr>
<td>Description</td>
<td>Use this command to display all the configuration settings that are saved to NV RAM or display the configuration settings as they are currently configured. Use the keyboard to list settings one line at a time (Enter), one page at a time (Space) or view all (a). The configuration settings are listed by category in the following order:</td>
</tr>
<tr>
<td>Parameters</td>
<td>current_config – Entering this parameter will display configurations entered without being saved to NVRAM.</td>
</tr>
<tr>
<td></td>
<td>config_in_nvram <config_id 1–2> – Entering this parameter will display configurations to be specified <config_id 1 – 2> which were saved in NV – RAM.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To view the current configuration settings:
DGS-3426:5#show config current_config
Command: show config current_config

#--
DGS-3426 Gigabit Ethernet Switch
Configuration
Firmware: Build 2.60.B26
Copyright(C) 2009 D-Link Corporation. All rights reserved.
#--

STACK
##Box
##ID Type Exist Prio
##----- ------ ---------- ------
1 DGS-3426P exist 16
2 DGS-3426 exist 32
3 DGS-3450 exist 32
4 Not_Exist no
5 Not_Exist no
6 Not_Exist no
upload

Purpose
Used to upload switch settings or the switch history log to a TFTP server.

Syntax
```plaintext
upload [cfg_toTFTP [<ipaddr> | <ipv6addr>] <path_filename 64> {<config_id 1–2>} | log_toTFTP [ipaddr] [ipv6addr] <path_filename 64>] | attack_log_toTFTP [ipaddr] [ipv6addr] <path_filename 64>] {unit <unit_id 1–12>}
```

Description
This command is used to upload either the Switch’s current settings or the Switch’s history log to a TFTP server.

Parameters
- **cfg_toTFTP** – Specifies that the Switch’s current settings will be uploaded to the TFTP server.
 - `<ipaddr>` – The IPv4 address of the TFTP server. The TFTP server must be on the same IP subnet as the Switch.
 - `<ipv6addr>` – The IPv6 address of the TFTP server. The TFTP server must be on the same IP subnet as the Switch.
 - `<path_filename 64>` – Specifies the location of the Switch configuration file on the TFTP server. This file will be replaced by the uploaded file from the Switch.
 - `<config_id 1–2>` – Entering this parameter will upload configurations to be specified, which were saved in NV-RAM to TFTP server.

- **log_toTFTP** – Specifies that the switch history log will be uploaded to the TFTP server.
 - `<ipaddr>` – The IP address of the TFTP server. The TFTP server must be on the same IP subnet as the Switch.
 - `<ipv6addr>` – The IPv6 address of the TFTP server. The TFTP server must be on the same IP subnet as the Switch.
 - `<path_filename 64>` – Specifies the location of the Switch configuration file on the TFTP server. This file will be replaced by the uploaded file from the Switch.

- **attack_log_toTFTP** – This command is used to upload a switch attack log to a TFTP server, such as a spoofing attack.
 - `<ipaddr>` – Enter the IPv4 address of the TFTP server to which to upload the attack log.
 - `<ipv6addr>` – Enter the IPv6 address of the TFTP server to which to upload the attack log.
 - `<path_filename 64>` – Specifies the location of the Switch configuration file on the TFTP server. This file will be replaced by the uploaded file from the Switch.
 - `unit <unit_id 1–12>` – Select the switch in the switch stack from where these attack log files will be uploaded, denoted by unit ID number.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To upload a configuration file:

```
DGS-3426:5#upload cfg_fromTFTP 10.48.74.121 c:\cfg\log.txt
Command: upload cfg_fromTFTP  10.48.74.121 c:\cfg\log.txt
Connecting to server................. Done.
Upload configuration...............Done.
DGS-3426:5#
```

To upload an attack log file:

```
DGS-3426:5#upload attack_log_toTFTP 10.48.74.121 c:\cfg\log.txt
Command: upload attack_log_toTFTP  10.48.74.121 c:\cfg\log.txt
Connecting to server................. Done.
Upload attack log....................Done.
DGS-3426:5#
```
show attack_log

Purpose: Used to display the switch history of attack log files.

Syntax:

```
show attack_log {unit <unit_id 1–12>} {index <value_list>}
```

Description: This command will display the contents of the attack log of the Switch. This log displays the time and date of a possible attack on the switch, such as a spoofing attack.

Parameters:

- `unit <unit_id 1–12>` – Select the switch in the switch stack for which to view attack log files.
- `index <value_list>` – This command will display the history log, beginning at 1 and ending at the value specified by the user in the `<value_list>` field.

If no parameter is specified, all history log entries will be displayed.

Restrictions: None.

Example usage:

```text
To display the attack log:

DGS-3426:5# show attack_log index 1–2
Command: show attack_log index 1–2

Index Date      Time         Log Text
----- --------  ----------- ----------------------
 2  2006–04–25  12:38:00 Possible spoofing attack from 000d010023001 port 1:23
1  2006–04–25  12:37:42 Possible spoofing attack from 000d010023001 port 1:23
```

clear attack_log

Purpose: Used to clear the switch history of attack log files.

Syntax:

```
clear attack_log {[unit <unit_id 1–12> | all]}
```

Description: This command will clear the contents of the attack log of the Switch.

Parameters:

- `unit <unit_id 1–12>` – Select the switch in the switch stack for which to clear attack log files.
- `all` – Entering this parameter will clear all attack log files in the switch stack.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

```text
To clear the attack log for all switches in the switch stack:

DGS-3426:5# clear attack_log all
Command: clear attack_log all
Success.
```
enable autoconfig

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to activate the auto-configuration function for the Switch. This will load a configuration from the TFTP server specified in the reply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable autoconfig</code></td>
</tr>
<tr>
<td>Description</td>
<td>When autoconfiguration is enabled on the Switch, the DHCP reply will contain a configuration file and path name. It will then request the file from the TFTP server specified in the reply. When autoconfig is enabled, the IPIF settings will automatically become DHCP client.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

NOTE: Dual–purpose (DHCP/TFTP) server utility software may require entry of the configuration file name and path within the user interface. Alternatively, the DHCP software may require creating a separate ext file with the configuration file name and path in a specific directory on the server. Consult the documentation for the DHCP server software if unsure.

Example usage:

To enable auto-configuration on the Switch:

```
DGS-3426:5# enable autoconfig
Command: enable autoconfig
Success.
```

When auto-configuration is enabled and the Switch is rebooted, the normal login screen will appear for a few moments while the autoconfig request (i.e. download configuration) is initiated. The console will then display the configuration parameters as they are loaded from the configuration file specified in the DHCP or TFTP server. This is exactly the same as using a `download config` command. After the entire Switch configuration is loaded, the Switch will automatically “logout” the server.

Upon booting up the autoconfig process is initiated, the console screen will appear similar to the example below. The configuration settings will be loaded in normal order.

```
DGS-3426 Gigabit Ethernet Switch
Command Line Interface
Firmware: Build 2.60.B26
Copyright(C) 2009 D-Link Corporation. All rights reserved.

DGS-3426:5#
DGS-3426:5# download config 10.41.44.44 c:\cfg\setting.txt
Command: download config 10.41.44.44 c:\cfg\setting.txt
Connecting to server................. Done.
Download configuration.............. Done.
```

The very end of the autoconfig process including the logout appears like this:
DGS-3426:5# create iproute default 172.18.212.253 1
Command: create iproute default 172.18.212.253 1
Success.
DGS-3426:5#
DGS-3426:5#---
DGS-3426:5# End of configuration file for DGS-3426
DGS-3426:5#

* Logout *

NOTE: With auto-configuration enabled, the Switch IPIF settings now define the Switch as a DHCP client. Use the `show switch` command to display the new IP settings status.

disable autoconfig

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Use this to deactivate auto-configuration from DHCP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable autoconfig</code></td>
</tr>
<tr>
<td>Description</td>
<td>This instructs the Switch not to accept auto-configuration instruction from the DHCP server. This does not change the IP settings of the Switch. The IPIF settings will continue as DHCP client until changed with the <code>config ipif</code> command.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To stop the auto-configuration function:

DGS-3426:5#disable autoconfig
Command: disable autoconfig
Success.
DGS-3426:5#

show autoconfig

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current auto-configuration status of the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show autoconfig</code></td>
</tr>
<tr>
<td>Description</td>
<td>This will list the current status of the auto-configuration function.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To view the auto-configuration status:
ping

Purpose
Used to test the connectivity between network devices.

Syntax
```
ping <ipaddr> {times <value 1–255>} {timeout <sec 1–99>}
```

Description
This command sends Internet Control Message Protocol (ICMP) echo messages to a remote IP address. The remote IP address will then “echo” or return the message. This is used to confirm connectivity between the Switch and the remote device.

Parameters
- `<ipaddr>` – Specifies the IP address of the host.
- `times <value 1–255>` – The number of individual ICMP echo messages to be sent. The maximum value is 255.
- `timeout <sec 1–99>` – Defines the time-out period while waiting for a response from the remote device. A value of 1 to 99 seconds can be specified. The default is 1 second.

Restrictions
None.

Example usage:
To ping the IP address 10.48.74.121 four times:

```
DGS-3426:5#ping 10.48.74.121 times 4
Command: ping 10.48.74.121
Reply from 10.48.74.121, time<10ms
Reply from 10.48.74.121, time<10ms
Reply from 10.48.74.121, time<10ms
Reply from 10.48.74.121, time<10ms
Ping statistics for 10.48.74.121
Packets: Sent =4, Received =4, Lost =0
```

ping6

Purpose
Used to test the connectivity between IPv6 ready network devices.

Syntax
```
ping6 <ipv6addr> {times <value 0–255> | size <value 1–6000>} {timeout <value 1–10>}
```

Description
This command sends Internet Control Message Protocol (ICMPv6) echo messages to a remote IPv6 address. The remote IP address will then “echo” or return the message. This is used to confirm connectivity between the Switch and the remote device.

Parameters
- `<ipv6addr>` – Specifies the IP address of the host.
- `times <value 0–255>` – The number of individual ICMP echo messages to be sent. The maximum value is 255.
- `size <value 1–6000>` – Use this parameter to set the datagram size of the packet, or in essence, the number of bytes in each ping packet. Users may set a size between 1 and 6000 bytes with a default setting of 100 bytes.
- `timeout <value 1–10>` – Select a timeout period between 1 and 10 seconds for this Ping message to reach its destination. If the packet fails to find the IPv6 address in this specified time, the Ping packet will be dropped.

Restrictions
None.
Example usage:

To ping the IPv6 address 2009::280:C8FF:FE3C:5C8A four times:

```
DGS-3426:5#ping6 2009::280:C8FF:FE3C:5C8A times 4 timeout 10
Command: ping6 2009::280:C8FF:FE3C:5C8A times 4 timeout 10

Reply from 2009::280:C8FF:FE3C:5C8A, bytes=100 time<10 ms

Ping statistics for 2009::280:C8FF:FE3C:5C8A
Packets: Sent =4, Received =4, Lost =0

DGS-3426:5#
```
NETWORK MONITORING COMMANDS

The network monitoring commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>show packet ports</td>
<td><portlist></td>
</tr>
<tr>
<td>show error ports</td>
<td><portlist></td>
</tr>
<tr>
<td>show utilization</td>
<td>[ports</td>
</tr>
<tr>
<td>clear counters</td>
<td>{ports <portlist>}</td>
</tr>
<tr>
<td>clear log</td>
<td></td>
</tr>
<tr>
<td>show log</td>
<td>(index <value_list>)</td>
</tr>
<tr>
<td>enable syslog</td>
<td></td>
</tr>
<tr>
<td>disable syslog</td>
<td></td>
</tr>
<tr>
<td>create syslog host</td>
<td><index 1–4> [severity [informational</td>
</tr>
<tr>
<td>config syslog host</td>
<td><index 1–4> [severity [informational</td>
</tr>
<tr>
<td>config syslog host all</td>
<td>[severity [informational</td>
</tr>
<tr>
<td>delete syslog host</td>
<td>[<index 1–4></td>
</tr>
<tr>
<td>show syslog host</td>
<td>{<index 1–4>}</td>
</tr>
<tr>
<td>show syslog</td>
<td></td>
</tr>
<tr>
<td>config system_severity</td>
<td>[trap</td>
</tr>
<tr>
<td>show system_severity</td>
<td></td>
</tr>
<tr>
<td>config log_save_timing</td>
<td>[time_interval <min 1–65535></td>
</tr>
<tr>
<td>show log_save_timing</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

show packet ports

Purpose
Used to display statistics about the packets sent and received by the Switch.

Syntax
`show packet ports <portlist>`

Description
This command is used to display statistics about packets sent and received by ports specified in the `<portlist>`.

Parameters
`<portlist>` – Specifies a port or range of ports to be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
None.
Example usage:

To display the packets analysis for port 7 of switch 1:

```
DGS-3426:5#show packet ports 1:7
Command: show packet ports 1:7

Port number : 1:7
===============================================================
<table>
<thead>
<tr>
<th>Frame Size/Type</th>
<th>Frame Counts</th>
<th>Frames/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>213448</td>
<td>19</td>
</tr>
<tr>
<td>65-127</td>
<td>64318</td>
<td>5</td>
</tr>
<tr>
<td>128-255</td>
<td>42651</td>
<td>0</td>
</tr>
<tr>
<td>256-511</td>
<td>17647</td>
<td>2</td>
</tr>
<tr>
<td>512-1023</td>
<td>10225</td>
<td>3</td>
</tr>
<tr>
<td>1024-1518</td>
<td>30804</td>
<td>7</td>
</tr>
<tr>
<td>Unicast RX</td>
<td>62807</td>
<td>0</td>
</tr>
<tr>
<td>Multicast RX</td>
<td>70925</td>
<td>15</td>
</tr>
<tr>
<td>Broadcast RX</td>
<td>238728</td>
<td>21</td>
</tr>
</tbody>
</table>

Frame Type             Total            Total/sec
-------------------------------------------------------
RX Bytes                83947600           13780
RX Frames               372460            36
TX Bytes                863819            0
TX Frames               6633              0
```

Example usage:

To display the errors of the port 3 of switch 1:

```
show error ports 3
```

Purpose: Used to display the error statistics for a range of ports.

Syntax: `show error ports <portlist>`

Description: This command will display all of the packet error statistics collected and logged by the Switch for a given port list.

Parameters: `<portlist>` – Specifies a port or range of ports to be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions: None.

Example usage:

To display the errors of the port 3 of switch 1:
show error ports 1:3

Command: show error ports 1:3

Port number : 1:3

<table>
<thead>
<tr>
<th>Error Type</th>
<th>RX Frames</th>
<th>TX Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Error</td>
<td>0</td>
<td>Excessive Deferral</td>
</tr>
<tr>
<td>Undersize</td>
<td>0</td>
<td>CRC Error</td>
</tr>
<tr>
<td>Oversize</td>
<td>0</td>
<td>Late Collision</td>
</tr>
<tr>
<td>Fragment</td>
<td>0</td>
<td>Excessive Collision</td>
</tr>
<tr>
<td>Jabber</td>
<td>0</td>
<td>Single Collision</td>
</tr>
<tr>
<td>Drop Pkts</td>
<td>0</td>
<td>Collision</td>
</tr>
<tr>
<td>Symbol Error</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Buffer Full Drop</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ACL Drop</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Multicast Drop</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VLAN Ingress Drop</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Purpose Used to display real-time port and CPU utilization statistics.

Syntax show utilization [ports | cpu]

Description This command will display the real-time port and CPU utilization statistics for the Switch.

Parameters
- **ports** – Entering this parameter will display the current port utilization of the Switch.
- **cpu** – Entering this parameter will display the current CPU utilization of the Switch.

Restrictions None.

Example usage:

To display the port utilization statistics:
DGS-3426:5#show utilization ports
Command: show utilization ports

<table>
<thead>
<tr>
<th>Port</th>
<th>TX/sec</th>
<th>RX/sec</th>
<th>Util</th>
<th>Port</th>
<th>TX/sec</th>
<th>RX/sec</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1:22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1:23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1:24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:7</td>
<td>31</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:15</td>
<td>10</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example usage:

To display the current CPU utilization:

DGS-3426:5#show utilization cpu
Command: show utilization cpu

CPU utilization:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Five seconds</td>
<td>15%</td>
<td>One minute</td>
<td>25%</td>
</tr>
<tr>
<td>Five minutes</td>
<td>14%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTRL+C ESC q Quit SPACE $ Next Page $ Previous Page $ Refresh
clear counters

Purpose
Used to clear the Switch’s statistics counters.

Syntax
```
clear counters {ports<portlist>}
```

Description
This command will clear the counters used by the Switch to compile statistics.

Parameters
- `ports <portlist>` - Specifies a port or range of ports to be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To clear the counters:

```
DGS-3426:5#clear counters ports 1:2–1:9
Command: clear counters ports 1:2–1:9
Success.
DGS-3426:5#
```

clear log

Purpose
Used to clear the Switch’s history log.

Syntax
```
clear log
```

Description
This command will clear the Switch’s history log.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To clear the log information:

```
DGS-3426:5#clear log
Command: clear log
Success.
DGS-3426:5#
```

show log

Purpose
Used to display the switch history log.

Syntax
```
show log {index <value_list>}
```

Description
This command will display the contents of the Switch’s history log.

Parameters
- `index <value_list>` - This command will display the history log, beginning at 1 and ending at the value specified by the user in the `<value_list>` field.

 If no parameter is specified, all history log entries will be displayed.

Restrictions
None.
Example usage:

To display the switch history log:

```
DGS-3426:5#show log index 1-5
Command: show log index 1-5

<table>
<thead>
<tr>
<th>Index</th>
<th>Date</th>
<th>Time</th>
<th>Log Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2006-04-02</td>
<td>09:38:18</td>
<td>Successful login through Console (Username: Anonymous)</td>
</tr>
<tr>
<td>4</td>
<td>2006-04-26</td>
<td>09:36:20</td>
<td>System started up</td>
</tr>
<tr>
<td>3</td>
<td>2006-04-25</td>
<td>12:38:18</td>
<td>Port 1 link up, 100Mbps FULL duplex</td>
</tr>
<tr>
<td>2</td>
<td>2006-04-25</td>
<td>12:38:00</td>
<td>Spanning Tree Protocol is disabled</td>
</tr>
<tr>
<td>1</td>
<td>2006-04-25</td>
<td>12:37:42</td>
<td>Configuration saved to flash (Username: Anonymous)</td>
</tr>
</tbody>
</table>
```

enable syslog

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable the system log to be sent to a remote syslog server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>enable syslog</td>
</tr>
<tr>
<td>Description</td>
<td>This command enables the system log to be sent to a remote syslog server.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the syslog function on the Switch:

```
DGS-3426:5#enable syslog
Command: enable syslog
Success.
```

disable syslog

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the system log to be sent to a remote system log.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable syslog</td>
</tr>
<tr>
<td>Description</td>
<td>This command disables the system log to be sent to a remote syslog server.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the syslog function on the Switch:

```
DGS-3426:5#disable syslog
Command: disable syslog
Success.
```
create syslog host

Purpose
Used to create a new syslog host.

Syntax
create syslog host <index 1–4> {severity informational | warning | all | facility [local0 | local1 | local2 | local3 | local4 | local5 | local6 | local7] | udp_port <udp_port_number> | ipaddress <ipaddr> | state [enable | disable]}

Description
This command is used to create a new syslog host.

Parameters

- <index 1–4> – Specifies that the command will be applied to an index of hosts. There are four available indexes, numbered 1 through 4.
- severity – Severity level indicator, as shown below:

 Bold font indicates that the corresponding severity level is currently supported on the Switch.

<table>
<thead>
<tr>
<th>Numerical Code</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Emergency: system is unusable</td>
</tr>
<tr>
<td>1</td>
<td>Alert: action must be taken immediately</td>
</tr>
<tr>
<td>2</td>
<td>Critical: critical conditions</td>
</tr>
<tr>
<td>3</td>
<td>Error: error conditions</td>
</tr>
<tr>
<td>4</td>
<td>Warning: warning conditions</td>
</tr>
<tr>
<td>5</td>
<td>Notice: normal but significant condition</td>
</tr>
<tr>
<td>6</td>
<td>Informational: informational messages</td>
</tr>
<tr>
<td>7</td>
<td>Debug: debug–level messages</td>
</tr>
</tbody>
</table>

- informational – Specifies that informational messages will be sent to the remote host. This corresponds to number 6 from the list above.
- warning – Specifies that warning messages will be sent to the remote host. This corresponds to number 4 from the list above.
- all – Specifies that all of the currently supported syslog messages that are generated by the Switch will be sent to the remote host.

- facility – Some of the operating system daemons and processes have been assigned Facility values. Processes and daemons that have not been explicitly assigned a Facility may use any of the "local use" facilities or they may use the "user–level" Facility. Those Facilities that have been designated are shown in the following: **Bold** font indicates the facility values that the Switch currently supports.

<table>
<thead>
<tr>
<th>Numerical Code</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kernel messages</td>
</tr>
<tr>
<td>1</td>
<td>user–level messages</td>
</tr>
<tr>
<td>2</td>
<td>mail system</td>
</tr>
<tr>
<td>3</td>
<td>system daemons</td>
</tr>
<tr>
<td>4</td>
<td>security/authorization messages</td>
</tr>
<tr>
<td>5</td>
<td>messages generated internally by syslog</td>
</tr>
<tr>
<td>6</td>
<td>line printer subsystem</td>
</tr>
<tr>
<td>7</td>
<td>network news subsystem</td>
</tr>
<tr>
<td>8</td>
<td>UUUCP subsystem</td>
</tr>
<tr>
<td>9</td>
<td>clock daemon</td>
</tr>
<tr>
<td>10</td>
<td>security/authorization messages</td>
</tr>
<tr>
<td>11</td>
<td>FTP daemon</td>
</tr>
<tr>
<td>12</td>
<td>NTP subsystem</td>
</tr>
<tr>
<td>13</td>
<td>log audit</td>
</tr>
<tr>
<td>14</td>
<td>log alert</td>
</tr>
<tr>
<td>15</td>
<td>clock daemon</td>
</tr>
<tr>
<td>16</td>
<td>local use 0 (local0)</td>
</tr>
<tr>
<td>17</td>
<td>local use 1 (local1)</td>
</tr>
</tbody>
</table>
create syslog host

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>local use 2 (local2)</td>
</tr>
<tr>
<td>19</td>
<td>local use 3 (local3)</td>
</tr>
<tr>
<td>20</td>
<td>local use 4 (local4)</td>
</tr>
<tr>
<td>21</td>
<td>local use 5 (local5)</td>
</tr>
<tr>
<td>22</td>
<td>local use 6 (local6)</td>
</tr>
<tr>
<td>23</td>
<td>local use 7 (local7)</td>
</tr>
</tbody>
</table>

local0 – Specifies that local use 0 messages will be sent to the remote host. This corresponds to number 16 from the list above.

local1 – Specifies that local use 1 messages will be sent to the remote host. This corresponds to number 17 from the list above.

local2 – Specifies that local use 2 messages will be sent to the remote host. This corresponds to number 18 from the list above.

local3 – Specifies that local use 3 messages will be sent to the remote host. This corresponds to number 19 from the list above.

local4 – Specifies that local use 4 messages will be sent to the remote host. This corresponds to number 20 from the list above.

local5 – Specifies that local use 5 messages will be sent to the remote host. This corresponds to number 21 from the list above.

local6 – Specifies that local use 6 messages will be sent to the remote host. This corresponds to number 22 from the list above.

local7 – Specifies that local use 7 messages will be sent to the remote host. This corresponds to number 23 from the list above.

udp_port <udp_port_number> – Specifies the UDP port number that the syslog protocol will use to send messages to the remote host.

ipaddress <ipaddr> – Specifies the IP address of the remote host where syslog messages will be sent. Only IPv4 addresses are supported for this feature.

state [enable | disable] – Allows the sending of syslog messages to the remote host, specified above, to be enabled and disabled.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To create a syslog host:

```
DGS-3426:5# create syslog host 1 ipaddress 10.1.1.1 state enable
Command: create syslog host 1 ipaddress 10.1.1.1 state enable
Success.
DGS-3426:5#
```

config syslog host

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Used to configure the syslog protocol to send system log data to a remote host.</td>
</tr>
<tr>
<td>Syntax</td>
<td>`config syslog host <index 1–4> [severity [informational</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the syslog protocol to send system log information to a remote host.</td>
</tr>
</tbody>
</table>
| **Parameters** | `<index 1–4>` – Specifies that the command will be applied to an index of hosts. There are four available indexes, numbered 1 through 4.
severity – Severity level indicator. These are described in the following:
Bold font indicates that the corresponding severity level is currently supported on the |
```
config syslog host

Switch.

Numerical       Severity
Code
0       Emergency: system is unusable
1       Alert: action must be taken immediately
2       Critical: critical conditions
3       Error: error conditions
4       Warning: warning conditions
5       Notice: normal but significant condition
6       Informational: informational messages
7       Debug: debug–level messages

informational – Specifies that informational messages will be sent to the remote host. This corresponds to number 6 from the list above.

warning – Specifies that warning messages will be sent to the remote host. This corresponds to number 4 from the list above.

all – Specifies that all of the currently supported syslog messages that are generated by the Switch will be sent to the remote host.

facility – Some of the operating system daemons and processes have been assigned Facility values. Processes and daemons that have not been explicitly assigned a Facility may use any of the "local use" facilities or they may use the "user–level" Facility. Those Facilities that have been designated are shown in the following: **Bold** font indicates the facility values the Switch currently supports.

Numerical       Facility
Code
0             kernel messages
1             user–level messages
2             mail system
3             system daemons
4             security/authorization messages
5             messages generated internally by syslog
6             line printer subsystem
7             network news subsystem
8             UUCP subsystem
9             clock daemon
10           security/authorization messages
11           FTP daemon
12           NTP subsystem
13           log audit
14           log alert
15           clock daemon
16           local use 0 (local0)
17           local use 1 (local1)
18           local use 2 (local2)
19           local use 3 (local3)
20           local use 4 (local4)
21           local use 5 (local5)
22           local use 6 (local6)
23           local use 7 (local7)

local0 – Specifies that local use 0 messages will be sent to the remote host. This corresponds to number 16 from the list above.

local1 – Specifies that local use 1 messages will be sent to the remote host. This corresponds to number 17 from the list above.

local2 – Specifies that local use 2 messages will be sent to the remote host. This corresponds to number 18 from the list above.

local3 – Specifies that local use 3 messages will be sent to the remote host. This corresponds to number 19 from the list above.

local4 – Specifies that local use 4 messages will be sent to the remote host. This corresponds to number 20 from the list above.
```
config syslog host

- **local5** – Specifies that local use 5 messages will be sent to the remote host. This corresponds to number 21 from the list above.
- **local6** – Specifies that local use 6 messages will be sent to the remote host. This corresponds to number 22 from the list above.
- **local7** – Specifies that local use 7 messages will be sent to the remote host. This corresponds to number 23 from the list above.
- **udp_port <udp_port_number>** – Specifies the UDP port number that the syslog protocol will use to send messages to the remote host.
- **ipaddress <ipaddr>** – Specifies the IP address of the remote host where syslog messages will be sent. Only IPv4 addresses are supported for this feature.
- **state [enable | disable]** – Allows the sending of syslog messages to the remote host, specified above, to be enabled and disabled.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure a syslog host:

```plaintext
DGS-3426:5# config syslog host 1 severity all
Command: config syslog host 1 severity all
Success.

DGS-3426:5# config syslog host 1 facility local0
Command: config syslog host 1 facility local0
Success.

DGS-3426:5# config syslog host 1 udp_port 6000
Command: config syslog host 1 udp_port 6000
Success.

DGS-3426:5# config syslog host 1 ipaddress 10.44.67.8
Command: config syslog host 1 ipaddress 10.44.67.8
Success.

DGS-3426:5# config syslog host 1 state enabled
Command: config syslog host 1 state enabled
Success.

DGS-3426:5#
```

config syslog host all

Purpose
Used to configure the syslog protocol to send system log data to a remote host.

Syntax
```
config syslog host all [severity [informational | warning | all] | facility [local0 | local1 | local2 | local3 | local4 | local5 | local6 | local7] | udp_port <udp_port_number> | state [enable | disable]]
```

Description
This command is used to configure the syslog protocol to send system log information to a remote host.

Parameters
- **all** – Specifies that the command will be applied to all hosts.
- **severity** – Severity level indicator, as described below:
 - **Bold** font indicates that the corresponding severity level is currently supported on the Switch.
 - **Numerical** Severity
config syslog host all

Code
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug–level messages

informational – Specifies that informational messages will be sent to the remote host. This corresponds to number 6 from the list above.

warning – Specifies that warning messages will be sent to the remote host. This corresponds to number 4 from the list above.

all – Specifies that all of the currently supported syslog messages that are generated by the Switch will be sent to the remote host.

facility – Some of the operating system daemons and processes have been assigned Facility values. Processes and daemons that have not been explicitly assigned a Facility may use any of the "local use" facilities or they may use the "user–level" Facility. Those Facilities that have been designated are shown in the following: **Bold** font indicates that the facility values the Switch currently supports.

<table>
<thead>
<tr>
<th>Numerical Facility</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kernel messages</td>
</tr>
<tr>
<td>1</td>
<td>user–level messages</td>
</tr>
<tr>
<td>2</td>
<td>mail system</td>
</tr>
<tr>
<td>3</td>
<td>system daemons</td>
</tr>
<tr>
<td>4</td>
<td>security/authorization messages</td>
</tr>
<tr>
<td>5</td>
<td>messages generated internally by syslog</td>
</tr>
<tr>
<td>6</td>
<td>line printer subsystem</td>
</tr>
<tr>
<td>7</td>
<td>network news subsystem</td>
</tr>
<tr>
<td>8</td>
<td>UUCP subsystem</td>
</tr>
<tr>
<td>9</td>
<td>clock daemon</td>
</tr>
<tr>
<td>10</td>
<td>security/authorization messages</td>
</tr>
<tr>
<td>11</td>
<td>FTP daemon</td>
</tr>
<tr>
<td>12</td>
<td>NTP subsystem</td>
</tr>
<tr>
<td>13</td>
<td>log audit</td>
</tr>
<tr>
<td>14</td>
<td>log alert</td>
</tr>
<tr>
<td>15</td>
<td>clock daemon</td>
</tr>
<tr>
<td>16</td>
<td>local use 0 (local0)</td>
</tr>
<tr>
<td>17</td>
<td>local use 1 (local1)</td>
</tr>
<tr>
<td>18</td>
<td>local use 2 (local2)</td>
</tr>
<tr>
<td>19</td>
<td>local use 3 (local3)</td>
</tr>
<tr>
<td>20</td>
<td>local use 4 (local4)</td>
</tr>
<tr>
<td>21</td>
<td>local use 5 (local5)</td>
</tr>
<tr>
<td>22</td>
<td>local use 6 (local6)</td>
</tr>
<tr>
<td>23</td>
<td>local use 7 (local7)</td>
</tr>
</tbody>
</table>

local0 – Specifies that local use 0 messages will be sent to the remote host. This corresponds to number 16 from the list above.

local1 – Specifies that local use 1 messages will be sent to the remote host. This corresponds to number 17 from the list above.

local2 – Specifies that local use 2 messages will be sent to the remote host. This corresponds to number 18 from the list above.

local3 – Specifies that local use 3 messages will be sent to the remote host. This corresponds to number 19 from the list above.

local4 – Specifies that local use 4 messages will be sent to the remote host. This corresponds to number 20 from the list above.

local5 – Specifies that local use 5 messages will be sent to the remote host. This corresponds to number 21 from the list above.
config syslog host all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local6</td>
<td>Specifies that local use 6 messages will be sent to the remote host. This corresponds to number 22 from the list above.</td>
</tr>
<tr>
<td>local7</td>
<td>Specifies that local use 7 messages will be sent to the remote host. This corresponds to number 23 from the list above.</td>
</tr>
<tr>
<td>udp_port <udp_port_number></td>
<td>Specifies the UDP port number that the syslog protocol will use to send messages to the remote host.</td>
</tr>
<tr>
<td>state [enable</td>
<td>disable]</td>
</tr>
</tbody>
</table>

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure all syslog hosts:

DGS-3426:5#config syslog host all severity all
Command: config syslog host all severity all
Success.

DGS-3426:5#config syslog host all facility local0
Command: config syslog host all facility local0
Success.

DGS-3426:5#config syslog host all udp_port 6000
Command: config syslog host all udp_port 6000
Success.

DGS-3426:5#config syslog host all ipaddress 10.44.67.8
Command: config syslog host all ipaddress 10.44.67.8
Success.

DGS-3426:5#config syslog host all state enabled
Command: config syslog host all state enabled
Success.

DGS-3426:5#

delete syslog host

Purpose
Used to remove a syslog host, that has been previously configured, from the Switch.

Syntax
delete syslog host [<index 1–4> | all]

Description
This command is used to remove a syslog host that has been previously configured from the Switch.

Parameters
<index 1–4> – Specifies that the command will be applied to an index of hosts. There are four available indexes, numbered 1 through 4.
all – Specifies that the command will be applied to all hosts.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete a previously configured Syslog host:
DGS-3426:5#delete syslog host 4
Command: delete syslog host 4
Success.
DGS-3426:5#

show syslog host

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the syslog hosts currently configured on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show syslog host {<index 1–4>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the syslog hosts that are currently configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><index 1–4></code> – Specifies that the command will be applied to an index of hosts. There are four available indexes, numbered 1 through 4.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To show syslog host information:

DGS-3426:5#show syslog host
Command: show syslog host
 Syslog Global State: Disabled

<table>
<thead>
<tr>
<th>Host Id</th>
<th>Host IP Address</th>
<th>Severity</th>
<th>Facility</th>
<th>UDP port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.2</td>
<td>All</td>
<td>Local0</td>
<td>514</td>
<td>Disabled</td>
</tr>
<tr>
<td>2</td>
<td>10.40.2.3</td>
<td>All</td>
<td>Local0</td>
<td>514</td>
<td>Disabled</td>
</tr>
<tr>
<td>3</td>
<td>10.21.13.1</td>
<td>All</td>
<td>Local0</td>
<td>514</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Total Entries : 3

DGS-3426:5#

show syslog

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the global current running status of the syslog function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show syslog</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command will display the current running status of the syslog function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To show the global state of the syslog function:

DGS-3426:5#show syslog
Command: show syslog
 Syslog Global State: Disabled

DGS-3426:5#
config system_severity

Purpose
To configure severity level of an alert required for log entry or trap message.

Syntax
```
config system_severity [trap | log | all] [critical | warning | information]
```

Description
This command is used to configure the system severity levels on the Switch. When an event occurs on the Switch, a message will be sent to the SNMP agent (trap), the Switch’s log or both. Events occurring on the Switch are separated into three main categories, these categories are NOT precisely the same as the parameters of the same name (see below).

- **Information** – Events classified as information are basic events occurring on the Switch that are not deemed as problematic, such as enabling or disabling various functions on the Switch.
- **Warning** – Events classified as warning are problematic events that are not critical to the overall function of the Switch but do require attention, such as unsuccessful downloads or uploads and failed logins.
- **Critical** – Events classified as critical are fatal exceptions occurring on the Switch, such as hardware failures or spoofing attacks.

Parameters
Choose one of the following to identify where severity messages are to be sent.

- **trap** – Entering this parameter will define which events occurring on the Switch will be sent to a SNMP agent for analysis.
- **log** – Entering this parameter will define which events occurring on the Switch will be sent to the Switch’s log for analysis.
- **all** – Entering this parameter will define which events occurring on the Switch will be sent to a SNMP agent and the Switch’s log for analysis.

Choose one of the following to identify what level of severity warnings are to be sent to the destination entered above.

- **critical** – Entering this parameter along with the proper destination, stated above, will instruct the Switch to send only critical events to the Switch’s log or SNMP agent.
- **warning** – Entering this parameter along with the proper destination, stated above, will instruct the Switch to send critical and warning events to the Switch’s log or SNMP agent.
- **information** – Entering this parameter along with the proper destination, stated above, will instruct the switch to send informational, warning and critical events to the Switch’s log or SNMP agent.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the system severity settings for critical traps only:

```
DGS-3426:5#config system_severity trap critical
Command: config system_severity trap critical
Success.
DGS-3426:5#
```

Example usage:
To upload an attack log file:

```
DGS-3426:5#upload attack_log_toTFTP 10.53.13.23 c:\attacklog1 unit 1
Command: upload attack_log_toTFTP 10.53.13.23 c:\attacklog1 unit 1
Connecting to server................. Done.
Upload attack log...................Done.
DGS-3426:5#
```
config log_save_timing

Purpose
Used to configure the method of saving log files to the switch's flash memory.

Syntax
```
config log_save_timing [time_interval <min 1–65535> | on_demand | log_trigger]
```

Description
This command allows the user to configure the time method used in saving log files to the switch's flash memory.

Parameters
- `time_interval <min 1–65535>` – Use this parameter to configure the time interval that will be implemented for saving log files. The log files will be save every x number of minutes that are configured here.
- `on_demand` – Users who choose this method will only save log files when they manually tell the Switch to do so, using the `save` or `save log` command.
- `log_trigger` – Users who choose this method will have log files saved to the Switch every time a log event occurs on the Switch.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the time interval as every 30 minutes for saving log files:

```
DGS-3426:5#config log_save_timing time_interval 30
Command: config log_save_timing time_interval 30
Success.
DGS-3426:5#
```

show log_save_timing

Purpose
Used to display the method configured for saving log files to the switch’s flash memory.

Syntax
```
show log_save_timing
```

Description
This command allows the user to view the time method configured for saving log files to the switch’s flash memory.

Parameters
None.

Restrictions
None.

Example usage:

To configure the time interval as every 30 minutes for saving log files:

```
DGS-3426:5#show log_save_timing
Command: show log_save_timing
Saving log method: every 30 minute(s)
DGS-3426:5#
```
MULTIPLE SPANNING TREE PROTOCOL (MSTP) COMMANDS

This Switch supports three versions of the Spanning Tree Protocol; 802.1d STP, 802.1w Rapid STP and 802.1s MSTP. Multiple Spanning Tree Protocol, or MSTP, is a standard defined by the IEEE community that allows multiple VLANs to be mapped to a single spanning tree instance, which will provide multiple pathways across the network. Therefore, these MSTP configurations will balance the traffic load, preventing wide scale disruptions when a single spanning tree instance fails. This will allow for faster convergences of new topologies for the failed instance. Frames designated for these VLANs will be processed quickly and completely throughout interconnected bridges utilizing either of the three spanning tree protocols (STP, RSTP or MSTP). This protocol will also tag BDPU packets so receiving devices can distinguish spanning tree instances, spanning tree regions and the VLANs associated with them. These instances will be classified by an instance_id. MSTP will connect multiple spanning trees with a Common and Internal Spanning Tree (CIST). The CIST will automatically determine each MSTP region, its maximum possible extent and will appear as one virtual bridge that runs a single spanning tree. Consequentially, frames assigned to different VLANs will follow different data routes within administratively established regions on the network, continuing to allow simple and full processing of frames, regardless of administrative errors in defining VLANs and their respective spanning trees. Each switch utilizing the MSTP on a network will have a single MSTP configuration that will have the following three attributes:

- A configuration name defined by an alphanumeric string of up to 32 characters (defined in the config stp mst_config_id command as name <string>).
- A configuration revision number (named here as a revision_level) and;
- A 4096 element table (defined here as a vid_range) which will associate each of the possible 4096 VLANs supported by the Switch for a given instance.

To utilize the MSTP function on the Switch, three steps need to be taken:

- The Switch must be set to the MSTP setting (config stp version)
- The correct spanning tree priority for the MSTP instance must be entered (config stp priority).
- VLANs that will be shared must be added to the MSTP Instance ID (config stp instance_id).

The Multiple Spanning Tree Protocol commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable stp</td>
<td></td>
</tr>
<tr>
<td>disable stp</td>
<td></td>
</tr>
<tr>
<td>config stp version</td>
<td>[mstp</td>
</tr>
<tr>
<td>config stp</td>
<td>{maxage <value 6-40></td>
</tr>
<tr>
<td></td>
<td>{value 4-30></td>
</tr>
<tr>
<td></td>
<td>{lbd_recover_timer <value 0></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>create stp instance_id</td>
<td><value 1–15></td>
</tr>
<tr>
<td>config stp instance_id</td>
<td><value 1–15> [add_vlan</td>
</tr>
<tr>
<td>delete stp instance_id</td>
<td><value 1–15></td>
</tr>
<tr>
<td>config stp priority</td>
<td><value 0–61440> instance_id <value 0–15></td>
</tr>
<tr>
<td>config stp mst_config_id</td>
<td>{revision_level <int 0–65535></td>
</tr>
<tr>
<td>config stp mst_ports</td>
<td><portlist> instance_id <value 0–15> {internalCost [auto</td>
</tr>
<tr>
<td></td>
<td><value 0–240>} (1)</td>
</tr>
<tr>
<td>show stp</td>
<td></td>
</tr>
<tr>
<td>show stp ports</td>
<td>{<portlist>}</td>
</tr>
<tr>
<td>show stp instance</td>
<td>{<value 0–15>}</td>
</tr>
</tbody>
</table>
Each command is listed, in detail, in the following sections.

enable stp
- **Purpose**: Used to globally enable STP on the Switch.
- **Syntax**: `enable stp`
- **Description**: This command allows the Spanning Tree Protocol to be globally enabled on the Switch.
- **Parameters**: None.
- **Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:

To enable STP, globally, on the Switch:

```
DGS-3426:5#enable stp
Command: enable stp
Success.
DGS-3426:5#
```

disable stp
- **Purpose**: Used to globally disable STP on the Switch.
- **Syntax**: `disable stp`
- **Description**: This command allows the Spanning Tree Protocol to be globally disabled on the Switch.
- **Parameters**: None.
- **Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:

To disable STP on the Switch:

```
DGS-3426:5#disable stp
Command: disable stp
Success.
DGS-3426:5#
```

config stp version
- **Purpose**: Used to globally set the version of STP on the Switch.
- **Syntax**: `config stp version [mstp | rstp | stp]`
- **Description**: This command allows the user to choose the version of the spanning tree to be implemented on the Switch.
- **Parameters**:
 - `mstp` – Selecting this parameter will set the Multiple Spanning Tree Protocol (MSTP) globally on the Switch.
 - `rstp` – Selecting this parameter will set the Rapid Spanning Tree Protocol (RSTP) globally on the Switch.
 - `stp` – Selecting this parameter will set the Spanning Tree Protocol (STP) globally on the Switch.
config stp version

Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:

To set the Switch globally for the Multiple Spanning Tree Protocol (MSTP):

```
DGS-3426:5# config stp version mstp
Command: config stp version mstp
Success.
DGS-3426:5#
```

config stp

Purpose Used to setup STP, RSTP, and MSTP on the Switch.

Syntax `config stp {maxage <value 6-40>|maxhops <value 1-40> |hellotime <value 1-10>|
forwarddelay <value 4-30>|txholdcount <value 1-10>|fbpdu [enable|disable]|lbd [enable|disable] |lbd_recover_timer [<value 0> | <value 60-1000000>]|nni_bpdu_addr [dot1d | dot1ad]] (1)`

Description This command is used to setup the Spanning Tree Protocol (STP) for the entire switch. All commands here will be implemented for the STP version that is currently set on the Switch.

Parameters
- **maxage <value 6-40>** – This value may be set to ensure that old information does not endlessly circulate through redundant paths in the network, preventing the effective propagation of the new information. Set by the Root Bridge, this value will aid in determining that the Switch has spanning tree configuration values consistent with other devices on the bridged LAN. If the value ages out and a BPDU has still not been received from the Root Bridge, the Switch will start sending its own BPDU to all other switches for permission to become the Root Bridge. If it turns out that your switch has the lowest Bridge Identifier, it will become the Root Bridge. The user may choose a time between 6 and 40 seconds. The default value is 20.
- **maxhops <value 1-40>** – The number of hops between devices in a spanning tree region before the BPDU (bridge protocol data unit) packet sent by the Switch will be discarded. Each switch on the hop count will reduce the hop count by one until the value reaches zero. The Switch will then discard the BDPU packet and the information held for the port will age out. The user may set a hop count from 1 to 40. The default is 20. If the entered value is less than 6, the maxhops will be 6.
- **hellotime <value 1-10>** – The user may set the time interval between transmission of configuration messages by the root device in STP, or by the designated router in RSTP, thus stating that the Switch is still functioning. A time between 1 and 10 seconds may be chosen, with a default setting of 2 seconds. If the value is more than 2, the hellotime will be 2.

In MSTP, the spanning tree is configured by port and therefore, the **hellotime** must be set using the `configure stp ports` command for switches utilizing the Multiple Spanning Tree Protocol.
- **forwarddelay <value 4-30>** – The maximum amount of time (in seconds) that the root device will wait before changing states. The user may choose a time between 4 and 30 seconds. The default is 15 seconds.
- **txholdcount <value 1-10>** – The maximum number of BDPU Hello packets transmitted per interval. Default value = 6.
- **fbpdu [enable | disable]** – Allows the forwarding of STP BPDU packets from other network devices when STP is disabled on the Switch. The default is disable.
- **lbd [enable | disable]** – When this is enabled, the Switch will temporarily block STP switch–wide when a BDPU packet has been looped back. If the Switch detects its own BDPU packet coming back, it signifies a loop on the network. STP will automatically be blocked and an alert will be sent to the administrator. The default is enable.
- **lbd_recover_timer [0 | < second 60 –1000000 >]** – Time allowed for recovery after an STP
config stp

Loopback has been detected. After the timer has expired the Switch checks for an STP loopback, if no loopback detected, STP will be resumed. Entering 0 will disable LBD recovery.

`nni_bpdu_addr [dot1d | dot1ad]` – Used to determine the BPDU protocol address for STP in a service provided site. It can use 802.1d STP address, 802.1ad service provider STP address or a user defined multicast address. The range of the user defined address is 0180C2000000 - 0180C2FFFFFF.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure STP with maxage 18 and maxhops of 15:

```
DGS-3426:5#config stp maxage 18 maxhops 15
Command: config stp maxage 18 maxhops 15
Success.
DGS-3426:5#
```

config stp ports

Purpose

Used to setup STP on the port level.

Syntax

```
```

Description

This command is used to create and configure STP for a group of ports.

Parameters

- `<portlist>` – Specifies a range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

- `externalCost` – This defines a metric that indicates the relative cost of forwarding packets to the specified port list. Port cost can be set automatically or as a metric value. The default value is `auto`.
 - `auto` – Setting this parameter for the external cost will automatically set the speed for forwarding packets to the specified port(s) in the list for optimal efficiency. Default port cost: 100Mbps port = 200000. Gigabit port = 20000.
 - `<value 1–200000000>` – Define a value between 1 and 200000000 to determine the external cost. The lower the number, the greater the probability the port will be chosen to forward packets.

- `hellotime <value 1–10>` – The time interval between transmission of configuration messages by the designated port, to other devices on the bridged LAN, thus stating that the Switch is still functioning. The user may choose a time between 1 and 10 seconds. The default is 2 seconds. If the value is more than 2, the hellotime will be 2.

- `migrate [yes | no]` – Setting this parameter as “yes” will set the ports to send out BDPU packets to other bridges, requesting information on their STP setting. If the Switch is configured for RSTP, the port will be capable to migrate from 802.1d STP to 802.1w RSTP. If the Switch is configured for MSTP, the port is capable of migrating from 802.1d STP to 802.1s MSTP. RSTP and MSTP can coexist with standard STP, however the benefits of RSTP and MSTP are not realized on a port where an 802.1d network connects to an 802.1w or 802.1s enabled network. Migration should be set as `yes` on ports connected to network stations or segments that are capable of being upgraded to 802.1w RSTP or 802.1s MSTP on all or some portion of the segment.

- `restricted_role [true | false | auto]` – Designates the port as an edge port. Edge ports cannot create
config stp ports

Loops, however, an edge port can lose edge port status if a topology change creates a potential for a loop. An edge port normally should not receive BPDU packets. If a BPDU packet is received it automatically loses edge port status. *false* indicates that the port does not have edge port status. *auto* allows the port to have edge status whenever possible and operate as if the edge status were true. In auto mode, the bridge will delay for a period of time to become edge port if no bridge BPDU is received.

- **p2p** (true | false | auto) – *true* indicates a point-to-point (P2P) shared link. P2P ports are similar to edge ports however they are restricted in that a P2P port must operate in full-duplex. Like edge ports, P2P ports transition to a forwarding state rapidly thus benefiting from RSTP. A p2p value of *false* indicates that the port cannot have p2p status. *auto* allows the port to have p2p status whenever possible and operate as if the p2p status were *true*. If the port cannot maintain this status (for example if the port is forced to half-duplex operation) the p2p status changes to operate as if the p2p value were *false*. The default setting for this parameter is *auto*.

- **state** (enable | disable) – Allows STP to be enabled or disabled for the ports specified in the port list. The default is *enable*.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure STP with path cost 19, hellotime set to 5 seconds, migration enable, and state enable for ports 1–5 of module 1.

```
DGS-3426:5#config stp ports 1:1-1:5 externalCost 19 hellotime 5 migrate yes state enable
Command: config stp ports 1:1-1:5 externalCost 19 hellotime 5 migrate yes state enable
Success.
DGS-3426:5#
```

create stp instance_id

- **Purpose**
 Used to create a STP instance ID for MSTP.

- **Syntax**
 create stp instance_id <value 1–15>

- **Description**
 This command is used to create an STP instance ID for the Multiple Spanning Tree Protocol. There are 16 STP instances on the Switch (one internal CIST, unchangeable) and the user may create up to 15 instance IDs for the Switch.

- **Parameters**
 - `<value 1–15>` – Enter a value between 1 and 15 to identify the Spanning Tree instance on the Switch.

- **Restrictions**
 Only Administrator and Operator-level users can issue this command.

Example usage:

To create a spanning tree instance 2:

```
DGS-3426:5#create stp instance_id 2
Command: create stp instance_id 2
Success.
DGS-3426:5#
```
config stp instance_id

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to add or delete vlans for instance ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config stp instance_id <value 1–15> [add_vlan</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to map VIDs (VLAN IDs) to previously configured STP instances on the Switch by creating an instance_id. A STP instance may have multiple members with the same MSTP configuration. There is no limit to the number of STP regions in a network but each region only supports a maximum of 16 spanning tree instances (one unchangeable default entry). VIDs can belong to only one spanning tree instance at a time. Note that switches in the same spanning tree region having the same STP instance_id must be mapped identically, and have the same configuration revision_level number and the same name.</td>
</tr>
<tr>
<td>Parameters</td>
<td><value 1–15> – Enter a number between 1 and 15 to define the instance_id. The Switch supports 16 STP regions with one unchangeable default instance ID set as 0. add_vlan – Along with the vid_range <vidlist> parameter, this command will add VIDs to the previously configured STP instance_id. remove_vlan – Along with the vid_range <vidlist> parameter, this command will remove VIDs to the previously configured STP instance_id. <vidlist> – Specify the VID range from configured VLANs set on the Switch. Supported VIDs on the Switch range from ID number 1 to 4094.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure instance ID 2 to add VID 10:

```
DGS-3426:5#config stp instance_id 2 add_vlan 10
Command : config stp instance_id 2 add_vlan 10
Success.
DGS-3426:5#
```

Example usage:

To remove VID 10 from instance ID 2:

```
DGS-3426:5#config stp instance_id 2 remove_vlan 10
Command : config stp instance_id 2 remove_vlan 10
Success.
DGS-3426:5#
```
delete stp instance_id

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a STP instance ID from the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>delete stp instance_id <value 1–15></td>
</tr>
<tr>
<td>Description</td>
<td>This command allows the user to delete a previously configured STP instance ID from the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><value 1–15> – Enter a value between 1 and 15 to identify the Spanning Tree instance on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete STP instance ID 2 from the Switch.

```
DGS-3426:5#delete stp instance_id 2
Command: delete stp instance_id 2
Success.
DGS-3426:5#
```

config stp priority

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to update the STP instance configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config stp priority <value 0–61440> instance_id <value 0–15></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to update the STP instance configuration settings on the Switch. The MSTP will utilize the priority in selecting the root bridge, root port and designated port. Assigning higher priorities to STP regions will instruct the Switch to give precedence to the selected instance_id for forwarding packets. The lower the priority value set, the higher the priority.</td>
</tr>
<tr>
<td>Parameters</td>
<td>priority <value 0–61440> – Select a value between 0 and 61440 to specify the priority for a specified instance_id for forwarding packets. The lower the value, the higher the priority. This entry must be divisible by 4096. instance_id <value 0–15> – Enter the value corresponding to the previously configured instance id of which the user wishes to set the priority value. An instance id of 0 denotes the default instance_id (CIST) internally set on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To set the priority value for instance_id 2 as 4096:

```
DGS-3426:5#config stp priority 4096 instance_id 2
Command : config stp priority 4096 instance_id 2
Success.
DGS-3426:5#
```

config stp mst_config_id

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to update the MSTP configuration identification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config stp mst_config_id {revision_level <int 0–65535></td>
</tr>
<tr>
<td>Description</td>
<td>This command will uniquely identify the MSTP configuration currently configured on the Switch. Information entered here will be attached to BPDU packets as an identifier for the MSTP region to which it belongs. Switches having the same revision_level and name will be considered as part of the same MSTP region.</td>
</tr>
</tbody>
</table>
config stp mst_config_id

Parameters

revision_level <int 0–65535> -- Enter a number between 0 and 65535 to identify the MSTP region. This value, along with the name will identify the MSTP region configured on the Switch. The default setting is 0.

name <string> -- Enter an alphanumeric string of up to 32 characters to uniquely identify the MSTP region on the Switch. This name, along with the revision_level value will identify the MSTP region configured on the Switch. If no name is entered, the default name will be the MAC address of the device.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the MSTP region of the Switch with revision_level 10 and the name “Trinity”:

```
DGS-3426:5#config stp mst_config_id revision_level 10 name Trinity
Command : config stp mst_config_id revision_level 10 name Trinity
Success.
DGS-3426:5#
```

config stp mst_ports

Purpose

Used to update the port configuration for a MSTP instance.

Syntax

```
config stp mst_ports <portlist> instance_id <value 0–15> {internalCost [auto | <value 1–200000000>] priority <value 0–240>} (1)
```

Description

This command will update the port configuration for a STP instance_id. If a loop occurs, the MSTP function will use the port priority to select an interface to put into the forwarding state. Set a higher priority value for interfaces to be selected for forwarding first. In instances where the priority value is identical, the MSTP function will implement the lowest port number into the forwarding state and other interfaces will be blocked. Remember that lower priority values mean higher priorities for forwarding packets.

Parameters

<portlist> -- Specifies a range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

instance_id <value 0–15> -- Enter a numerical value between 0 and 15 to identify the instance_id previously configured on the Switch. An entry of 0 will denote the CIST (Common and Internal Spanning Tree).

internalCost -- This parameter is set to represent the relative cost of forwarding packets to specified ports when an interface is selected within a STP instance. The default setting is auto. There are two options:

- auto -- Selecting this parameter for the internalCost will set quickest route automatically and optimally for an interface. The default value is derived from the media speed of the interface.
- value 1–200000000 -- Selecting this parameter with a value in the range of 1–200000000 will set the quickest route when a loop occurs. A lower internalCost represents a quicker transmission.

priority <value 0–240> -- Enter a value between 0 and 240 to set the priority for the port interface. A higher priority will designate the interface to forward packets first. A lower number denotes a higher priority.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:
To designate ports 1 to 2 on module 1, with instance ID 0, to have an auto internalCost and a priority of 0:

```
DGS-3426:5#config stp mst_ports 1:1–1:2 instance_id 0 internalCost auto priority 0
Command: config stp mst_ports 1:1–1:2 instance_id 0 internalCost auto priority 0
Success.
DGS-3426:5#
```

show stp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the Switch’s current STP configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show stp</td>
</tr>
<tr>
<td>Description</td>
<td>This command displays the Switch’s current STP configuration.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the status of STP on the Switch:

Status 1: STP enabled with STP compatible version

```
DGS-3426:5#show stp
Command: show stp

STP Bridge Global Settings
-----------------------------------
STP Status : Enabled
STP Version : STP Compatible
Max Age : 20
Hello Time : 2
Forward Delay : 15
Max Age : 20
TX Hold Count : 3
Forwarding BPDU : Enabled
Loopback Detection : Enabled
LBD Recover Time : 60
NNI BPDU Address : dot1ad

DGS-3426:5#
```

Status 2: STP enabled for RSTP

```
DGS-3426:5#show stp
Command: show stp

STP Bridge Global Settings
-----------------------------------
STP Status : Enabled
STP Version : RSTP
Max Age : 20
Hello Time : 2
Forward Delay : 15
Max Age : 20
TX Hold Count : 3
Forwarding BPDU : Enabled
Loopback Detection : Enabled
LBD Recover Time : 60
NNI BPDU Address : dot1ad

DGS-3426:5#
```
Status 3: STP enabled for MSTP

<table>
<thead>
<tr>
<th>Command: show stp</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP Bridge Global Settings</td>
</tr>
<tr>
<td>STP Status : Enabled</td>
</tr>
<tr>
<td>STP Version : MSTP</td>
</tr>
<tr>
<td>Max Age : 20</td>
</tr>
<tr>
<td>Forward Delay : 15</td>
</tr>
<tr>
<td>Max Hops : 20</td>
</tr>
<tr>
<td>TX Hold Count : 3</td>
</tr>
<tr>
<td>Forwarding BPDU : Enabled</td>
</tr>
<tr>
<td>Loopback Detection : Enabled</td>
</tr>
<tr>
<td>LBD Recover Time : 60</td>
</tr>
<tr>
<td>NNI BPDU Address : dot1ad</td>
</tr>
</tbody>
</table>

show stp ports

Purpose: Used to display the Switch’s current STP port configuration.

Syntax: `show stp ports <portlist>`

Description: This command is used to display the STP port settings and STP port Operational Status currently implemented on the Switch.

Parameters:

- `<portlist>` – Specifies a range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions: None.

Example usage:

To show STP ports:

```
DGS-3426:5#show stp ports 1:1-1:9
Command: show stp ports 1:1-1:9
```

MSTP Port Information

<table>
<thead>
<tr>
<th>Port Index</th>
<th>Hello Time</th>
<th>Port STP</th>
<th>LBD</th>
<th>External PathCost</th>
<th>Edge Port</th>
<th>P2P</th>
<th>Port RestrictedRole</th>
<th>Port RestrictedTCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8000/0050BA7120D6</td>
<td>200000</td>
<td>128</td>
<td>Forwarding</td>
<td>Root</td>
<td>128</td>
<td>Forwarding</td>
<td>Master</td>
</tr>
<tr>
<td>1</td>
<td>8001/0053131A3324</td>
<td>200000</td>
<td>128</td>
<td>Forwarding</td>
<td>Master</td>
<td>128</td>
<td>Forwarding</td>
<td>Master</td>
</tr>
</tbody>
</table>

`CTRL+C ESC q Quit SPACE n Next Page p Previous Page r Refresh`
show stp instance

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the Switch’s STP instance configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show stp instance <value 0–15></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s current STP Instance Settings and the STP Instance Operational Status.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><value 0–15></code> – Enter a value defining the previously configured instance_id on the Switch. An entry of 0 will display the STP configuration for the CIST internally set on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the STP instance configuration for instance 0 (the internal CIST) on the Switch:

```
DGS-3426:5#show stp instance 0
Command: show stp instance 0

STP Instance Settings
----------------------
Instance Type         : CIST
Instance Status       : Enabled
Instance Priority     : 32768 (Bridge Priority : 32768, SYS ID Ext : 0 )

STP Instance Operational Status
-----------------------------
Designated Root Bridge    : 32766/00-90-27-39-78-E2
External Root Cost       : 200012
Regional Root Bri        : 32768/00-53-13-1A-33-24
Internal Root Cost       : 0
Designated Bridge        : 32768/00-50-BA-71-20-D6
Root Port                : 1:23
Max Age                  : 20
Forward Delay            : 15
Last Topology Change     : 856
Topology Changes Count   : 2987
```

show stp mst_config_id

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the MSTP configuration identification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show stp mst_config_id</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s current MSTP configuration identification.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To show the MSTP configuration identification currently set on the Switch:
DGS-3426:5# show stp mst_config_id
Command: show stp mst_config_id

Current MST Configuration Identification

Configuration Name: 00:19:5B:3D:7C:D6 Revision Level: 0
MSTI ID Vid list
-------- -----------------------------
 CIST 1-4094

DGS-3426:5#
FORWARDING DATABASE COMMANDS

The layer 2 forwarding database commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create fdb</td>
<td><code><vlan_name 32> <macaddr> port <port></code></td>
</tr>
<tr>
<td>create multicast_fdb</td>
<td><code><vlan_name 32> <macaddr></code></td>
</tr>
<tr>
<td>config multicast_fdb</td>
<td>`<vlan_name 32> <macaddr> [add</td>
</tr>
<tr>
<td>config fdb aging_time</td>
<td><code><sec 10–1000000></code></td>
</tr>
<tr>
<td>delete fdb</td>
<td><code><vlan_name 32> <macaddr></code></td>
</tr>
<tr>
<td>clear fdb</td>
<td>`[vlan <vlan_name 32></td>
</tr>
<tr>
<td>show multicast_fdb</td>
<td>`{[vlan <vlan_name 32></td>
</tr>
<tr>
<td>show fdb</td>
<td>`{port <port></td>
</tr>
<tr>
<td>config multicast filtering_mode</td>
<td>`<vlan_name 32></td>
</tr>
<tr>
<td>show multicast filtering_mode</td>
<td><code>(vlan <vlan_name 32>)</code></td>
</tr>
<tr>
<td>show ipfdb</td>
<td><code><ipaddr></code></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create fdb

Purpose

Used to create a static entry to the unicast MAC address forwarding table (database).

Syntax

```
create fdb <vlan_name 32> <macaddr> port <port>
```

Description

This command is used to make an entry in the Switch’s unicast MAC address forwarding database.

Parameters

`<vlan_name 32>` – The name of the VLAN on which the MAC address resides.

`<macaddr>` – The MAC address that will be added to the forwarding table.

`port <port>` – The port number corresponding to the MAC destination address. The Switch will always forward traffic to the specified device through this port. The port is specified by listing the switch number and the port number on that switch, separated by a colon. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To create a unicast MAC FDB entry:

```
DGS-3426:5# create fdb default 00-00-00-00-01-02 port 1:5
Command: create fdb default 00-00-00-00-01-02 port 1:5
Success.
DGS-3426:5#
```
create multicast_fdb

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create a static entry to the multicast MAC address forwarding table (database)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>create multicast_fdb <vlan_name 32> <macaddr></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to make an entry in the Switch’s multicast MAC address forwarding database.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><vlan_name 32></code> – The name of the VLAN on which the MAC address resides. <code><macaddr></code> – The MAC address that will be added to the forwarding table.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To create multicast MAC forwarding:

```
DGS-3426:5# create multicast_fdb default 01-00-00-00-00-01
Command: create multicast_fdb default 01-00-00-00-00-01
Success.
DGS-3426:5#
```

config multicast_fdb

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the Switch’s multicast MAC address forwarding database.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config multicast_fdb <vlan_name 32> <macaddr> [add</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the multicast MAC address forwarding table.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><vlan_name 32></code> – The name of the VLAN on which the MAC address resides. <code><macaddr></code> – The MAC address that will be added to the multicast forwarding table. `[add</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To add multicast MAC forwarding:

```
DGS-3426:5# config multicast_fdb default 01-00-00-00-00-01 add 1:1–1:5
Command: config multicast_fdb default 01-00-00-00-00-01 add 1:1–1:5
Success.
DGS-3426:5#
```
config fdb aging_time

Purpose
Used to set the aging time of the forwarding database.

Syntax
```
config fdb aging_time <sec 10–1000000>
```

Description
The aging time affects the learning process of the Switch. Dynamic forwarding table entries, which are made up of the source MAC addresses and their associated port numbers, are deleted from the table if they are not accessed within the aging time. The aging time can be from 10 to 1000000 seconds with a default value of 300 seconds. A very long aging time can result in dynamic forwarding table entries that are out-of-date or no longer exist. This may cause incorrect packet forwarding decisions by the Switch. If the aging time is too short however, many entries may be aged out too soon. This will result in a high percentage of received packets whose source addresses cannot be found in the forwarding table, in which case the Switch will broadcast the packet to all ports, negating many of the benefits of having a switch.

Parameters

- `<sec 10–1000000>` – The aging time for the MAC address forwarding database value. The value in seconds may be between 10 and 1000000 seconds.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To set the FDB aging time:

```
DGS-3426:5#config fdb aging_time 300
Command: config fdb aging_time 300
Success.
DGS-3426:5#
```

delete fdb

Purpose
Used to delete an entry to the Switch’s forwarding database.

Syntax
```
delete fdb <vlan_name 32> <macaddr>
```

Description
This command is used to delete a previous entry to the Switch’s MAC address forwarding database.

Parameters

- `<vlan_name 32>` – The name of the VLAN on which the MAC address resides.
- `<macaddr>` – The MAC address that will be deleted from the forwarding table.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete a permanent FDB entry:

```
DGS-3426:5#delete fdb default 00-00-00-00-01-02
Command: delete fdb default 00-00-00-00-01-02
Success.
DGS-3426:5#
```

Example usage:

To delete a multicast FDB entry:
clear fdb

Purpose
Used to clear the Switch’s forwarding database of all dynamically learned MAC addresses.

Syntax
```
clear fdb [vlan <vlan_name 32> | port <port> | all]
```

Description
This command is used to clear dynamically learned entries to the Switch’s forwarding database.

Parameters
- `<vlan_name 32>` – The name of the VLAN on which the MAC address resides.
- `<port>` – The port number corresponding to the MAC destination address. The Switch will always forward traffic to the specified device through this port. The port is specified by listing the switch number and the port number on that switch, separated by a colon. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Clears all dynamic entries to the Switch’s forwarding database.

Restrictions
- Only Administrator and Operator-level users can issue this command.

Example usage:
To clear all FDB dynamic entries:

```
DGS-3426:5#clear fdb all
Command: clear fdb all
Success.
DGS-3426:5#
```

show multicast_fdb

Purpose
Used to display the contents of the Switch’s multicast forwarding database.

Syntax
```
show multicast_fdb {vlan <vlan_name 32> | vlanid <vidlist> | mac_address <macaddr>}
```

Description
This command is used to display the current contents of the Switch’s multicast MAC address forwarding database.

Parameters
- `<vlan_name 32>` – The name of the VLAN on which the MAC address resides. The VID of the VLAN on which the MAC address resides.
- `<vidlist>` – Displays the entries for the VLANs indicated by the VID list.
- `<macaddr>` – The MAC address that is present in the forwarding database table.

Restrictions
- None.

Example usage:
To display multicast MAC address table:
DGS–3426:5#show multicast_fdb vlan default
Command: show multicast_fdb vlan default

VLAN Name : default
MAC Address : 01–00–5E–00–00–00
Egress Ports: 1:1–1:5
Mode : Static

Total Entries: 1

DGS–3426:5#

show fdb

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current unicast MAC address forwarding database.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show fdb { port <port></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current contents of the Switch’s forwarding database.</td>
</tr>
</tbody>
</table>
| Parameters | port <port> – The port number corresponding to the MAC destination address. The Switch will always forward traffic to the specified device through this port. The port is specified by listing the switch number and the port number on that switch, separated by a colon. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4.
 <vlan_name 32> – The name of the VLAN on which the MAC address resides.
 The VID of the VLAN on which the MAC address resides
 <vidlist> – Displays the entries for the VLANs indicated by the VID list.
 <macaddr> – The MAC address that is present in the forwarding database table.
 static – Displays the static MAC address entries.
 aging_time – Displays the aging time for the MAC address forwarding database. |
| Restrictions | None. |

Example usage:

To display unicast MAC address table:
DGS–3426:5#show fdb
Command: show fdb

Unicast MAC Address Aging Time = 300

<table>
<thead>
<tr>
<th>VID</th>
<th>VLAN Name</th>
<th>MAC Address</th>
<th>Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–39–34–66–9A</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–51–43–70–00</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–5E–00–01–01</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–74–60–72–2D</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–81–05–00–80</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–81–05–02–00</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–81–48–70–01</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–E2–4F–57–03</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–E2–61–53–18</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–E2–6B–BC–F6</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–E2–7F–6B–53</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–E2–82–7D–90</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–00–F8–7C–1C–29</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–01–02–03–04–00</td>
<td>CPU</td>
<td>Self</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–01–02–03–04–05</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–01–30–10–2C–C7</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–01–30–FA–5F–00</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
<tr>
<td>1</td>
<td>default</td>
<td>00–02–3F–63–DD–68</td>
<td>1:10</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>

config multicast filtering_mode

Purpose: Used to configure the multicast packet filtering mode for specific VLANs.

Syntax:

```
config multicast filtering_mode [<vlan_name 32> | all] [forward_all_groups | forward_unregistered_groups | filter_unregistered_groups]
```

Description: This command is used to configure the multicast packet filtering mode for specified VLANs on the Switch.

Parameters:

- `<vlan_name 32>` – Specifies a VLAN by VLAN name to set. If no VLAN is defined here, the rule is applied to all VLANs.
- `[forward_all_groups | forward_unregistered_groups | filter_unregistered_groups]` – The user may set the filtering mode to any of these three options.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the multicast filtering mode to filter unregistered groups on all VLANs.

```
DGS–3426:5#config multicast filtering_mode all filter_unregistered_groups
Command: config multicast filtering_mode all filter_unregistered_groups
Success.
DGS–3426:5#
```
show multicast filtering_mode

Purpose Used to show the multicast packet filtering mode as configured for the VLANs.
Syntax `show multicast filtering_mode {vlan <vlan_name 32>}`
Description This command is used to display the current multicast packet filtering mode for specified VLANs or all VLANs on the Switch.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan <vlan_name 32></code></td>
<td>Specifies a VLAN to display multicast filtering status.</td>
</tr>
</tbody>
</table>

Restrictions None.

Example usage:

To view the multicast filtering mode for all VLANs:

```
DGS-3426:5#show multicast filtering_mode
Command: show multicast filtering_mode

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Multicast Filter Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>filter_unregistered_groups</td>
</tr>
<tr>
<td>v1</td>
<td>filter_unregistered_groups</td>
</tr>
<tr>
<td>v2</td>
<td>filter_unregistered_groups</td>
</tr>
<tr>
<td>v3</td>
<td>filter_unregistered_groups</td>
</tr>
</tbody>
</table>

DGS-3426:5#
```

show ipfdb

Purpose Used to display the current IP address forwarding database table.
Syntax `show ipfdb <ipaddr>`
Description This command is used to display the current contents of the Switch’s IP forwarding database.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><ipaddr></code></td>
<td>The user may enter an IP address by which to view the table.</td>
</tr>
</tbody>
</table>

Restrictions None.

Example usage:

To view the IP forwarding database table:

```
DGS-3426:5#show ipfdb
Command: show ipfdb

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>Port</th>
<th>Learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>10.0.0.1</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.0.2</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.0.3</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.0.4</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.0.7</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.0.30</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.34.1</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.51.1</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.58.4</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.0.85.168</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.1</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.99</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.101</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.102</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.103</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.152</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.157</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.161</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.162</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.1.1.163</td>
<td>1:13</td>
<td>Dynamic</td>
</tr>
</tbody>
</table>
On a computer network, packets such as Multicast packets and Broadcast packets continually flood the network as normal procedure. At times, this traffic may increase due to a malicious endstation on the network or a malfunctioning device, such as a faulty network card. Thus, switch throughput problems will arise and consequently affect the overall performance of the switch network. To help rectify this packet storm, the Switch will monitor and control the situation.

The packet storm is monitored to determine if too many packets are flooding the network, based on the threshold level provided by the user. Once a packet storm has been detected, the Switch will drop packets coming into the Switch until the storm has subsided. This method can be utilized by selecting the Drop option of the Action field in the window below. The Switch will also scan and monitor packets coming into the Switch by monitoring the Switch’s chip counter. This method is only viable for Broadcast and Multicast storms because the chip only has counters for these two types of packets. Once a storm has been detected (that is, once the packet threshold set below has been exceeded), the Switch will shutdown the port to all incoming traffic with the exception of STP BPDU packets, for a time period specified using the Countdown field. If this field times out and the packet storm continues, the port will be placed in a Shutdown Forever mode which will produce a warning message to be sent to the Trap Receiver. Once in Shutdown Forever mode, the only way to recover the shutdown forever port on the Switch is to use the traffic control_recovery command.

The broadcast storm control commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config traffic control_recover</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>config traffic trap</td>
<td>[none</td>
</tr>
<tr>
<td>show traffic control</td>
<td>[&lt;portlist&gt;]</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
**config traffic control**

**Purpose**
Used to configure broadcast/multicast/dlf traffic control.

**Syntax**
```
```

**Description**
This command is used to configure traffic control.

**Parameters**
- `<portlist>` – Used to specify a range of ports to be configured for traffic control. This is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Specifies all ports are to be configured for traffic control on the Switch.
- `broadcast [enable | disable]` – Enables or disables broadcast storm control.
- `multicast [enable | disable]` – Enables or disables multicast storm control.
- `dlf [enable | disable]` – Enables or disables dlf traffic control.
- `action` – Used to configure the action taken when a storm control has been detected on the Switch. The user has two options:
  - `drop` – Utilizes the hardware Traffic Control mechanism, which means the Switch’s hardware will determine the Packet Storm based on the Threshold value stated and drop packets until the issue is resolved.
  - `shutdown` – Utilizes the Switch’s software Traffic Control mechanism to determine the Packet Storm occurring. Once detected, the port will deny all incoming traffic to the port except STP BPDU packets, which are essential in keeping the Spanning Tree operational on the Switch. If the countdown timer has expired and yet the Packet Storm continues, the port will be placed in Shutdown Forever mode and is no longer operational until the user manually resets the port using the `config traffic control_recover` command. Choosing this option obligates the user to configure the `time_interval` field as well, which will provide packet count samplings from the Switch’s chip to determine if a Packet Storm is occurring.
- `threshold <value 0–255000>` – The upper threshold at which the specified traffic control is switched on. The `<value>` is the number of broadcast/multicast/dlf packets, in packets per second (pps), received by the Switch that will trigger the storm traffic control measures. The default setting is 131072.
- `time_interval` – The Interval will set the time between Multicast and Broadcast packet counts sent from the Switch’s chip to the Traffic Control function. These packet counts are the determining factor in deciding when incoming packets exceed the Threshold value.
  - `sec 5–30` – The Interval may be set between 5 and 30 seconds with the default setting of 5 seconds.
- `countdown` – The countdown timer is set to determine the amount of time, in minutes, that the Switch will wait before shutting down the port that is experiencing a traffic storm. This parameter is only useful for ports configured as shutdown in the action field of this command and therefore will not operate for Hardware based Traffic Control implementations.
  - `0` – 0 is the default setting for this field and 0 will denote that the port will never shutdown.
  - `minutes 5–30` – Select a time from 5 to 30 minutes that the Switch will wait before shutting down. Once this time expires and the port is still experiencing packet storms, the port will be placed in shutdown forever mode and can only be manually recovered using the `config traffic control_recover` command mentioned previously in this manual.

**Restrictions**
Only Administrator and Operator-level users can issue this command.
Example usage:

To configure traffic control and enable broadcast storm control system wide:

```
DGS-3426:5#config traffic control all broadcast enable
Command: config traffic control all broadcast enable
Success.
DGS-3426:5#
```

`config traffic control_recover`:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure traffic control recover for any or all ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config traffic control_recover [&lt;portlist]</td>
</tr>
<tr>
<td>Description</td>
<td>Configuring a port for traffic control recover will require an administrator to restart the specified ports if storm control shuts down the port or ports. That is, if a storm triggers the action shutdown for a port, it will remain in the shutdown even if the threshold falls below the value that triggers the storm control action.</td>
</tr>
</tbody>
</table>
| Parameters | `<portlist>` – Used to specify a range of ports. This is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)  
`all` – All ports on switches in the switch stack. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure traffic control recover for ports 1–6 on unit 1:

```
DGS-3426:5#config traffic control_recover 1:1-1:6
Command: config traffic control_recover 1:1-1:6
Success.
DGS-3426:5#
```

`config traffic trap`:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure traps for traffic control.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config traffic trap [none</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure traffic storm trap messages.</td>
</tr>
</tbody>
</table>
| Parameters | `none` – Will send no Storm trap warning messages regardless of action taken by the Traffic Control mechanism.  
`storm_occurred` – Will send Storm Trap warning messages upon the occurrence of a Traffic Storm only.  
`storm_cleared` – Will send Storm Trap messages when a Traffic Storm has been cleared by the Switch only.  
`both` – Will send Storm Trap messages when a Traffic Storm has been both detected and cleared by the Switch. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |
Example usage:

To configure traffic control and enable broadcast storm control system wide:

```
DGS-3426:5#config traffic trap storm_occurred
Command: config traffic trap storm_occurred
Success.
DGS-3427:4#
```

### show traffic control

**Purpose**

Used to display current traffic control settings.

**Syntax**

```
show traffic control {<portlist>}
```

**Description**

This command is used to display the current storm traffic control configuration on the Switch.

**Parameters**

- `<portlist>` – Specify a range of ports to display. If unspecified, all ports will be displayed. This is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

**Restrictions**

None.

Example usage:

To display traffic control setting:

```
DGS-3426:5#show traffic control
Command: show traffic control
Traffic Storm Control Trap : [None]

<table>
<thead>
<tr>
<th>Port</th>
<th>Thres</th>
<th>Broadcast</th>
<th>Multicast</th>
<th>Unicast</th>
<th>Action</th>
<th>Count</th>
<th>Time</th>
<th>Shutdown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hold</td>
<td>Storm</td>
<td>Storm</td>
<td>Storm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

CTRL+C ESC q Quit SPACE a Next Page ENTER Next Entry a All
The xStack® DGS–3400 Series supports 802.1p priority queuing. The Switch has eight priority queues, one of which is internal and not configurable. These priority queues are numbered from 6 (Class 6) — the highest priority queue — to 0 (Class 0) — the lowest priority queue. The eight priority tags specified in IEEE 802.1p (p0 to p7) are mapped to the Switch’s priority queues as follows:

- Priority 0 is assigned to the Switch’s Q2 queue.
- Priority 1 is assigned to the Switch’s Q0 queue.
- Priority 2 is assigned to the Switch’s Q1 queue.
- Priority 3 is assigned to the Switch’s Q3 queue.
- Priority 4 is assigned to the Switch’s Q4 queue.
- Priority 5 is assigned to the Switch’s Q5 queue.
- Priority 6 is assigned to the Switch’s Q6 queue.
- Priority 7 is assigned to the Switch’s Q6 queue.

Priority scheduling is implemented by the priority queues stated above. The Switch will empty the seven hardware priority queues in order, beginning with the highest priority queue, 6, to the lowest priority queue, 0. Each hardware queue will transmit all of the packets in its buffer before permitting the next lower priority to transmit its packets. When the lowest hardware priority queue has finished transmitting all of its packets, the highest hardware priority queue will begin transmitting any packets it may have received.

The commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config bandwidth_control</td>
<td>[ &lt;portlist&gt;</td>
</tr>
<tr>
<td>show bandwidth_control</td>
<td>{&lt;portlist&gt;}</td>
</tr>
<tr>
<td>config scheduling</td>
<td>&lt;class_id 0–6&gt; {max_packet &lt;value 0–15&gt;} (1)</td>
</tr>
<tr>
<td>show scheduling</td>
<td></td>
</tr>
<tr>
<td>config 802.1p user_priority</td>
<td>&lt;priority 0–7&gt; &lt;class_id 0–6&gt;</td>
</tr>
<tr>
<td>show 802.1p user_priority</td>
<td></td>
</tr>
<tr>
<td>config 802.1p default_priority</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>show 802.1p default_priority</td>
<td>{&lt;portlist&gt;}</td>
</tr>
<tr>
<td>config scheduling_mechanism</td>
<td>[strict</td>
</tr>
<tr>
<td>show scheduling_mechanism</td>
<td></td>
</tr>
<tr>
<td>enable hol_prevention</td>
<td></td>
</tr>
<tr>
<td>disable hol_prevention</td>
<td></td>
</tr>
<tr>
<td>show hol_prevention</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
### config bandwidth_control

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure bandwidth control on a port–by–port basis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config bandwidth_control [ &lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure bandwidth on a port–by–port basis.</td>
</tr>
</tbody>
</table>
| Parameters       | `<portlist>` – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, `1:3` specifies switch number 1, port 3. `2:4` specifies switch number 2, port 4. `1:3–2:4` specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: `1:1–1:3,1:7–1:9`)  
  
  `rx_rate` – Specifies that one of the parameters below (`no_limit` or `<value 64-10000000>`) will be applied to the rate at which the above specified ports will be allowed to receive packets  
  
  - `no_limit` – Specifies that there will be no limit on the rate of packets received by the above specified ports.  
  - `<value 64–10000000>` – Specifies the receiving packet limit in Kbps, that the above ports will be allowed to receive.  
  
  `tx_rate` – Specifies that one of the parameters below (`no_limit` or `<value 64-10000000>`) will be applied to the rate at which the above specified ports will be allowed to transmit packets.  
  
  - `no_limit` – Specifies that there will be no limit on the rate of packets transmitted by the above specified ports.  
  - `<value 64-10000000>` – Specifies the packet limit, in Kbps, that the above ports will be allowed to receive.  

| Restrictions     | Only Administrator and Operator-level users can issue this command. |

**Example usage:**

To configure bandwidth control:

```
DGS-3426:5# config bandwidth_control 1:1-1:8 rx_rate 64 tx_rate 64
Command: config bandwidth_control 1:1-1:8 rx_rate 64 tx_rate 64
Success.
DGS-3426:5#```
show bandwidth_control

Purpose
Used to display the bandwidth control table.

Syntax
show bandwidth_control <portlist>

Description
This command is used to display the current bandwidth control configuration on the
Switch, on a port–by–port basis.

Parameters
<portlist> – Specifies a port or range of ports to be viewed. The port list is specified by
listing the lowest switch number and the beginning port number on that switch, separated
by a colon. Then the highest switch number, and the highest port number of the range
(also separated by a colon) are specified. The beginning and end of the port list range
are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4
specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port
3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated
by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
None.

Example usage:

To display bandwidth control settings:

DGS-3426:5# show bandwidth_control 1:1–1:10
Command: show bandwidth_control 1:1–1:10

Bandwidth Control Table

<table>
<thead>
<tr>
<th>Port</th>
<th>RX Rate</th>
<th>TX Rate</th>
<th>Effective RX</th>
<th>Effective TX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(64Kbit/sec)</td>
<td>(64Kbit/sec)</td>
<td>(64Kbit/sec)</td>
<td>(64Kbit/sec)</td>
</tr>
<tr>
<td>1</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>2</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>3</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>4</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>5</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>6</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>7</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>8</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>9</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
<tr>
<td>10</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
<td>no_limit</td>
</tr>
</tbody>
</table>

DGS-3426P:4#
config scheduling

Purpose
Used to configure the traffic scheduling mechanism for each QoS queue.

Syntax
config scheduling <class_id 0–6> {max_packet <value 0–15>} (1)

Description
The Switch contains eight hardware priority queues, one of which is internal and not configurable. Incoming packets must be mapped to one of these seven queues. This command is used to specify the rotation by which these seven hardware priority queues are emptied.

The Switch’s default (if the config scheduling command is not used, or if the config scheduling command is entered with the max_packet set to 0) is to empty the hardware priority queues in order – from the highest priority queue (hardware queue 6) to the lowest priority queue (hardware queue 0). Each hardware queue will transmit all of the packets in its buffer before allowing the next lower priority queue to transmit its packets. When the lowest hardware priority queue has finished transmitting all of its packets, the highest hardware priority queue can again transmit any packets it may have received.

The max_packets parameter allows you to specify the maximum number of packets a given hardware priority queue can transmit before allowing the next lowest hardware priority queue to begin transmitting its packets. A value between 0 and 15 can be specified. For example, if a value of 3 is specified, then the highest hardware priority queue (number 6) will be allowed to transmit 3 packets – then the next lowest hardware priority queue (number 5) will be allowed to transmit 3 packets, and so on, until all of the queues have transmitted 3 packets. The process will then repeat.

Parameters
<class_id 0–6> – This specifies to which of the seven hardware priority queues the config scheduling command will apply. The seven hardware priority queues are identified by number – from 0 to 6 – with the 0 queue being the lowest priority.
max_packet <value 0–15> – Specifies the maximum number of packets the above specified hardware priority queue will be allowed to transmit before allowing the next lowest priority queue to transmit its packets. A value between 0 and 15 can be specified.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the traffic scheduling mechanism for each queue:

DGS-3426:5# config scheduling 0 max_packet 12
Command: config scheduling 0 max_packet 12
Success.

DGS-3426:5#

show scheduling

Purpose
Used to display the currently configured traffic scheduling on the Switch.

Syntax
show scheduling

Description
This command will display the current traffic scheduling mechanisms in use on the Switch.

Parameters
None.

Restrictions
None.

Example usage:

To display the current scheduling configuration:
DGS-3426:5# show scheduling
Command: show scheduling

QoS Output Scheduling

<table>
<thead>
<tr>
<th>Class ID</th>
<th>MAX. Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-0</td>
<td>1</td>
</tr>
<tr>
<td>Class-1</td>
<td>2</td>
</tr>
<tr>
<td>Class-2</td>
<td>3</td>
</tr>
<tr>
<td>Class-3</td>
<td>4</td>
</tr>
<tr>
<td>Class-4</td>
<td>5</td>
</tr>
<tr>
<td>Class-5</td>
<td>6</td>
</tr>
<tr>
<td>Class-6</td>
<td>7</td>
</tr>
</tbody>
</table>

DGS-3426:5#

config 802.1p user_priority

Purpose
Used to map the 802.1p user priority of an incoming packet to one of the seven hardware queues available on the Switch.

Syntax
```
config 802.1p user_priority <priority 0–7> <class_id 0–6>
```

Description
This command is used to configure the way the Switch will map an incoming packet, based on its 802.1p user priority, to one of the seven available hardware priority queues on the Switch.

The Switch’s default is to map the following incoming 802.1p user priority values to the seven hardware priority queues:

<table>
<thead>
<tr>
<th>802.1p</th>
<th>Hardware Queue</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>Mid–low</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Lowest</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Lowest</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Mid–low</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Mid–high</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Mid–high</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Highest</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Highest</td>
</tr>
</tbody>
</table>

This mapping scheme is based upon recommendations contained in IEEE 802.1D.

Users may change this mapping by specifying the 802.1p user priority you want to go to the `<class_id 0–6>` (the number of the hardware queue).

Parameters

- `<priority 0–7>` – The 802.1p user priority you want to associate with the `<class_id 0–6>` (the number of the hardware queue) with.
- `<class_id 0–6>` – The number of the Switch’s hardware priority queue. The Switch has seven hardware priority queues available. They are numbered between 0 (the lowest priority) and 6 (the highest priority).

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure 802.1 user priority on the Switch:

```
DGS-3426:5# config 802.1p user_priority 1 6
Command: config 802.1p user_priority 1 6
Success.
DGS-3426:5#
```
show 802.1p user_priority

Purpose
Used to display the current mapping between an incoming packet’s 802.1p priority value and one of the Switch’s seven hardware priority queues.

Syntax
show 802.1p user_priority

Description
This command is used to display the current mapping of an incoming packet’s 802.1p priority value to one of the Switch’s seven hardware priority queues.

Parameters
None.

Restrictions
None.

Example usage:
To display 802.1p user priority:

DGS-3426:5#show 802.1p user_priority
Command: show 802.1p user_priority

QOS Class of Traffic
Priority-0 -> <Class-2>
Priority-1 -> <Class-0>
Priority-2 -> <Class-1>
Priority-3 -> <Class-3>
Priority-4 -> <Class-4>
Priority-5 -> <Class-5>
Priority-6 -> <Class-6>
Priority-7 -> <Class-6>

DGS-3426:5#

config 802.1p default_priority

Purpose
Used to configure the 802.1p default priority settings on the Switch. If an untagged packet is received by the Switch, the priority configured with this command will be written to the packet’s priority field.

Syntax
config 802.1p default_priority [portlist] [all] <priority 0–7>

Description
This command is used to specify a default priority handling of untagged packets received by the Switch. The priority value entered with this command will be used to determine which of the seven hardware priority queues the packet is forwarded to.

Parameters

- <portlist> – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

- all – Specifies that the command applies to all ports on the Switch.

- <priority 0–7> – The priority value to assign to untagged packets received by the Switch or a range of ports on the Switch.

Restrictions
Only Administrator and Operator-level users can issue this command.
Example usage:

To configure 802.1p default priority on the Switch:

```
DGS-3426:5#config 802.1p default_priority all 5
Command: config 802.1p default_priority all 5
Success.
DGS-3426:5#
```

show 802.1 default_priority

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the currently configured 802.1p priority value that will be assigned to an incoming, untagged packet before being forwarded to its destination.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show 802.1p default_priority {<portlist>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the currently configured 802.1p priority value that will be assigned to an incoming, untagged packet before being forwarded to its destination.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><portlist></code> – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the current 802.1p default priority configuration on the Switch:

```
DGS-3426:5#show 802.1p default_priority
Command: show 802.1p default_priority

<table>
<thead>
<tr>
<th>Port</th>
<th>Priority</th>
<th>Effective Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
config scheduling_mechanism

Purpose
Used to configure the scheduling mechanism for the QoS function.

Syntax
```
config scheduling_mechanism [strict | weight_fair]
```

Description
This command is used to select between a *weight fair* and a *Strict* mechanism for emptying the priority classes of service of the QoS function. The Switch contains seven hardware priority classes of service. Incoming packets must be mapped to one of these seven hardware priority classes of service. This command is used to specify the rotation by which these seven hardware priority classes of service are emptied.

The Switch’s default is to empty the seven priority classes of service in order – from the highest priority class of service (queue 6) to the lowest priority class of service (queue 0). Each queue will transmit all of the packets in its buffer before allowing the next lower priority class of service to transmit its packets. Lower classes of service will be pre-empted from emptying its queue if a packet is received on a higher class of service. The packet that was received on the higher class of service will transmit its packet before allowing the lower class to resume clearing its queue.

Parameters
- **strict** – Entering the `strict` parameter indicates that the highest class of service is the first to be processed. That is, the highest class of service should finish emptying before the others begin.
- **weight_fair** – Entering the weight fair parameter indicates that the priority classes of service will empty packets in a fair weighted order. That is to say that they will be emptied in an even distribution.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the traffic scheduling mechanism for each QoS queue:

```
DGS-3426:5# config scheduling_mechanism strict
Command: config scheduling_mechanism strict
Success.
DGS-3426:5#
```

show scheduling_mechanism

Purpose
Used to display the current traffic scheduling mechanisms in use on the Switch.

Syntax
```
show scheduling_mechanism
```

Description
This command is used to display the current traffic scheduling mechanisms in use on the Switch.

Parameters
None.

Restrictions
None.

Example usage:

To show the scheduling mechanism:

```
DGS-3426:5# show scheduling_mechanism
```
DGS-3426:5#show scheduling_mechanism
Command: show scheduling_mechanism

QOS scheduling_mechanism
CLASS ID Mechanism
----------- -----------
Class–0 strict
Class–1 strict
Class–2 strict
Class–3 strict
Class–4 strict
Class–5 strict
Class–6 strict

DGS-3426:5#

enable hol_prevention

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable HOL prevention.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable hol_prevention</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable Head of Line prevention.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable HOL prevention:

DGS-3426:5#enable hol_prevention
Command: enable hol_prevention
Success.
DGS-3426:5#

disable hol_prevention

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable HOL prevention.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable hol_prevention</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable Head of Line prevention.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable HOL prevention:

DGS-3426:5#disable hol_prevention
Command: disable hol_prevention
Success.
DGS-3426:5#
`show hol_prevention`

Purpose
Used to show HOL prevention.

Syntax

```
show hol_prevention
```

Description
This command is used to display the Head of Line prevention state.

Parameters
None.

Restrictions
None.

Example usage:
To view the HOL prevention status:

```
DGS-3426:5#show hol_prevention
Command: show hol_prevention

Device HOL Prevention State: Enabled

DGS-3426:5#
```
PORT MIRRORING COMMANDS

The port mirroring commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config mirror port</td>
<td><port> [add</td>
</tr>
<tr>
<td>enable mirror</td>
<td></td>
</tr>
<tr>
<td>disable mirror</td>
<td></td>
</tr>
<tr>
<td>show mirror</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

config mirror port

Purpose

Used to configure a mirror port – source port pair on the Switch. Traffic from any source port to a target port can be mirrored for real–time analysis. A logic analyzer or an RMON probe can then be attached to study the traffic crossing the source port in a completely non–intrusive manner.

Syntax

config mirror port <port> [add | delete] source ports <portlist> [rx | tx | both]

Description

This command is used to allows a range of ports to have all of their traffic also sent to a designated port, where a network sniffer or other device can monitor the network traffic. In addition, users can specify that only traffic received by or sent by one or both is mirrored to the Target port.

Parameters

- <port>
 - This specifies the Target port (the port where mirrored packets will be received). The target port must be configured in the same VLAN and must be operating at the same speed as the source port. If the target port is operating at a lower speed, the source port will be forced to drop its operating speed to match that of the target port. The port is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4.

- [add | delete] – Specifies to add or delete ports to be mirrored which are specified in the source ports parameter.

- source ports – The port or ports being mirrored. This cannot include the Target port.
 - <portlist> – This specifies a port or range of ports that will be mirrored. That is, the range of ports in which all traffic will be copied and sent to the Target port. That is, the range of ports in which all traffic will be copied and sent to the Target port. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a comma. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

- rx – Allows the mirroring of only packets received by (flowing into) the port or ports in the port list.

- tx – Allows the mirroring of only packets sent to (flowing out of) the port or ports in the port list.

- both – Mirrors all the packets received or sent by the port or ports in the port list.

Restrictions

The Target port cannot be listed as a source port. Only Administrator and Operator-level users can issue this command.

Example usage:
To add the mirroring ports:

DGS-3426:5# config mirror port 1:1 add source ports 1:2–1:7 both
Command: config mirror port 1:1 add source ports 1:2–1:7 both
Success.
DGS-3426:5#

Example usage:

To delete the mirroring ports:

DGS-3426:5# config mirror port 1:1 delete source ports 1:2–1:4 both
Command: config mirror port 1:1 delete source ports 1:2–1:4 both
Success.
DGS-3426:5#

enable mirror

Purpose Used to enable a previously entered port mirroring configuration.
Syntax enable mirror
Description This command, combined with the disable mirror command below, allows users to enter a port mirroring configuration into the Switch, and then turn the port mirroring on and off without having to modify the port mirroring configuration.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:

To enable mirroring configurations:

DGS-3426:5# enable mirror
Command: enable mirror
Success.
DGS-3426:5#

disable mirror

Purpose Used to disable a previously entered port mirroring configuration.
Syntax disable mirror
Description This command, combined with the enable mirror command above, allows users to enter a port mirroring configuration into the Switch, and then turn the port mirroring on and off without having to modify the port mirroring configuration.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:

To disable mirroring configurations:
DGS-3426:5#disable mirror
Command: disable mirror
Success.
DGS-3426:5#

show mirror

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show the current port mirroring configuration on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show mirror</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current port mirroring configuration on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display mirroring configuration:

DGS-3426:5#show mirror
Command: show mirror

Current Settings
Mirror Status : Enabled
Target Port : 1:1
Mirrored Port :
RX :
TX : 1:2–1:7

DGS-3426:5#
Along with normal VLAN configurations, this Switch now incorporates Q-in-Q VLANs. Also known as Double VLANs, Q-in-Q VLANs allow network providers to expand their VLAN configurations to place VLANs within a larger inclusive VLAN, which adds a new layer to the VLAN configuration. This basically lets large ISPs create L2 Virtual Private Networks and also create transparent LANs for their customers, which will connect two or more customer LAN points without over complicating configurations on the client's side. Not only will over-complication be avoided, but now the administrator has over 4000 VLANs in which over 4000 VLANs can be placed, therefore greatly expanding the VLAN network.

Implementation of this feature adds a VLAN frame to an existing VLAN frame for the ISP VLAN recognition and classification. To ensure devices notice this added VLAN frame, an Ethernet encapsulation, here known as a tpid, is also added to the frame. The device recognizes this tpid and therefore checks the VLAN tagged packet to see if a provider VLAN tag has been added. If so, the packet is then routed through this provider VLAN, which contains smaller VLANs with similar configurations to ensure speedy and guaranteed routing destination of the packet.

The VLAN commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create vlan</td>
<td><vlan_name 32> {tag <vlanid 2-4094></td>
</tr>
<tr>
<td>delete vlan</td>
<td><vlan_name 32></td>
</tr>
<tr>
<td>config vlan</td>
<td><vlan_name 32> {{add [tagged</td>
</tr>
<tr>
<td>config gvrp</td>
<td>[<portlist></td>
</tr>
<tr>
<td>enable gvrp</td>
<td></td>
</tr>
<tr>
<td>disable gvrp</td>
<td></td>
</tr>
<tr>
<td>show vlan</td>
<td>{{<vlan_name 32></td>
</tr>
<tr>
<td>show gvrp</td>
<td>(<portlist>)</td>
</tr>
<tr>
<td>enable double_vlan</td>
<td></td>
</tr>
<tr>
<td>disable double_vlan</td>
<td></td>
</tr>
<tr>
<td>create double_vlan</td>
<td><vlan_name 32> spvid <vlanid 1–4094> {tpid <hex 0x0–0xffff}></td>
</tr>
<tr>
<td>config double_vlan</td>
<td><vlan_name> {{[add [access</td>
</tr>
<tr>
<td>delete double_vlan</td>
<td><vlan_name></td>
</tr>
<tr>
<td>show double_vlan</td>
<td>(<vlan_name>)</td>
</tr>
<tr>
<td>enable pvid auto_assign</td>
<td></td>
</tr>
<tr>
<td>disable pvid auto_assign</td>
<td></td>
</tr>
<tr>
<td>show pvid auto_assign</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
create vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create a VLAN on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`create vlan <vlan_name 32> {tag <vlanid 2-4094></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create VLANs on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><vlan_name 32></code> – The name of the VLAN to be created.
<code>tag <vlanid 2–4094></code> – The VLAN ID of the VLAN to be created. Allowed values = 2–4094
<code>type</code> – This parameter uses the type field of the packet header to determine the packet protocol and destination VLAN:
▪ <code>1q_vlan</code> – Allows the creation of a normal 802.1Q VLAN on the Switch.
<code>advertisement</code> – Specifies that the VLAN is able to join GVRP.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Each VLAN name can be up to 32 characters. Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To create a VLAN v1, tag 2:

```
DGS-3426:5# create vlan v1 tag 2
Command: create vlan v1 tag 2
Success.
DGS-3426:5#
```

delete vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a previously configured VLAN on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>delete vlan <vlan_name 32></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a previously configured VLAN on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><vlan_name 32></code> – The VLAN name of the VLAN to delete.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To remove the VLAN “v1”:

```
DGS-3426:5# delete vlan v1
Command: delete vlan v1
Success.
DGS-3426:5#
```
config vlan

Purpose
Used to add additional ports to a previously configured VLAN.

Syntax
config vlan <vlan_name 32> {[add [tagged | untagged | forbidden] | delete] <portlist> | advertisement [enable | disable]} (1)

Description
This command is used to add ports to the port list of a previously configured VLAN. The additional ports may be specified as tagging, untagging, or forbidden. The default is to assign the ports as untagging.

Parameters

<vlan_name 32> – The name of the VLAN to which to add ports.

add – Entering the add parameter will add ports to the VLAN. There are three types of ports to add:

• tagged – Specifies the additional ports as tagged.
• untagged – Specifies the additional ports as untagged.
• forbidden – Specifies the additional ports as forbidden

delete – Deletes ports from the specified VLAN.

<portlist> – A port or range of ports to add to, or delete from the specified VLAN. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

advertisement [enable | disable] – Enables or disables GVRP on the specified VLAN.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To add 4 through 8 as tagged ports to the VLAN v1:

DGS-3426:5#config vlan v1 add tagged 1:4–1:8
Command: config vlan v1 add tagged 1:4–1:8
Success.
DGS-3426:5#

To delete ports from a VLAN:

DGS-3426:5# config vlan v1 delete 1:6–1:8
Command: config vlan v1 delete 1:6–1:8
Success.
DGS-3426:5#
config gvrp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure GVRP on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config gvrp [<portlist>] all {state [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the Group VLAN Registration Protocol on the Switch. Users may configure ingress checking, the sending and receiving of GVRP information, and the Port VLAN ID (PVID).</td>
</tr>
<tr>
<td>Parameters</td>
<td><portlist> – A port or range of ports for which to enable GVRP. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td></td>
<td>all – Specifies all of the ports on the Switch.</td>
</tr>
<tr>
<td></td>
<td>state [enable</td>
</tr>
<tr>
<td></td>
<td>ingress_checking [enable</td>
</tr>
<tr>
<td></td>
<td>acceptable_frame [tagged_only</td>
</tr>
<tr>
<td></td>
<td>pvid <vlanid 1–4094> – Specifies the default VLAN ID associated with the port.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To set the ingress checking status, the sending and receiving GVRP information:

```
DGS-3426:5#config gvrp 1:1–1:4 state enable ingress_checking enable acceptable_frame tagged_only pvid 2
Command: config gvrp 1:1–1:4 state enable ingress_checking enable acceptable_frame tagged_only pvid 2
Success.
DGS-3426:5#
```

enable gvrp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable GVRP on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable gvrp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command, along with disable gvrp below, is used to enable and disable GVRP on the Switch, without changing the GVRP configuration on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the GARP VLAN Registration Protocol (GVRP):

```
DGS-3426:5#enable gvrp
Success.
DGS-3426:5#
```
DGS–3426:5#enable gvrp
Command: enable gvrp
Success.
DGS–3426:5#

disable gvrp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable GVRP on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable gvrp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command, along with <code>enable gvrp</code>, is used to enable and disable GVRP on the Switch, without changing the GVRP configuration on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the GARP VLAN Registration Protocol (GVRP):

DGS–3426:5#disable gvrp
Command: disable gvrp
Success.
DGS–3426:5#

show vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current VLAN configuration information including parameters settings and operational value on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show vlan {<vlan_name 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display summary information about each VLAN including the VLAN ID, VLAN name, the Tagging/Untagging status, and the Member/Non-member/Forbidden status of each port that is a member of the VLAN.</td>
</tr>
</tbody>
</table>
| Parameters | `<vlan_name 32>` – The VLAN name of the VLAN for which to display a summary of settings.
`vidlist` – Specifies a list of VLANs by VLAN ID.
`ports` – Specifies a port or range of ports for which the VLAN status is to be displayed. |
| Restrictions | None. |

Example usage:

To display the Switch’s current VLAN settings:

DGS–3426:5#show vlan
DGS-3426:5# show vlan

Command: show vlan

<table>
<thead>
<tr>
<th>VID</th>
<th>VLAN Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VLAN Type</th>
<th>Advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Ports</th>
<th>Static Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1-1:24</td>
<td>1:1-1:24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Tagged Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Untagged Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1-1:24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static Tagged Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static Untagged Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1-1:24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forbidden Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total Entries: 1

DGS-3426:5#

show gvrp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the GVRP status for a port list on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show gvrp {<portlist>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the GVRP status for a port list on the Switch.</td>
</tr>
</tbody>
</table>

Parameters

- `<portlist>` - Specifies a port or range of ports for which the GVRP status is to be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

| Restrictions | None. |

Example usage:

To display GVRP port status:
DGS–3426:5#show gvrp
Command: show gvrp

Global GVRP : Disabled

<table>
<thead>
<tr>
<th>Port</th>
<th>PVID</th>
<th>GVRP</th>
<th>Ingress Checking</th>
<th>Acceptable Frame Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:2</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:3</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:4</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:5</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:6</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:7</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:8</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:9</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:10</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:11</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:12</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:13</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:14</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:15</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:16</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:17</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:18</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
</tbody>
</table>

CTRL+C ESC Q Quit SPACE A Next Page ENTER Next Entry A All

enable double_vlan

Purpose: Used to enable the Q-in-Q VLAN feature on the Switch.

Syntax: `enable double_vlan`

Description: This command, along with the `disable double_vlan` command, enables and disables the Q-in-Q Tag VLAN. When Q-in-Q VLANs are enabled, the system configurations for VLANs will return to the default setting, except stacking information, IP address, log, user accounts and banner setting, in order to enable the Q-in-Q (Double VLAN) VLAN mode. In the Q-in-Q VLAN mode, normal VLANs and GVRP functions are disabled. The Q-in-Q VLAN default setting is disabled.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To enable the Q-in-Q VLAN feature on the Switch, thus disabling normal VLANs and GVRP:

DGS–3426:5#enable double_vlan
Command: enable double_vlan
Current Double VLAN mode : Disabled
Enable Double VLAN need to reset system config. Are you sure ?(y/n)y

Success.

DGS–3426:5#
disable double_vlan

Purpose: Used to disable the Q-in-Q VLAN feature on the Switch.

Syntax: disable double_vlan

Description: This command, along with the enable double_vlan command, enables and disables the Q-in-Q Tag VLAN. When Q-in-Q VLANs are enabled, the system configurations for VLANs will return to the default setting, except stacking information, IP address, log, user accounts and banner setting, in order to enable the Q-in-Q VLAN mode. In the Q-in-Q (Double VLAN) VLAN mode, normal VLANs and GVRP functions are disabled. The Q-in-Q VLAN default setting is disabled.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To disable the Q-in-Q VLAN feature on the Switch:

```
DGS-3426:5#disable double_vlan
Command: disable double_vlan
Current Double VLAN mode : Enabled
Disable Double VLAN need to reset system config. Are you sure ?(y/n)y
Success.
DGS-3426:5#
```

create double_vlan

Purpose: Used to create a Q-in-Q VLAN on the Switch.

Syntax: create double_vlan <vlan_name 32> spvid <vlanid 1–4094> {tpid <hex 0x0–0xffff>}

Description: This command is used to create a Q-in-Q VLAN (service provider VLAN) on the Switch.

Parameters:
- `vlan <vlan_name 32>` – The name of the Q-in-Q VLAN to be created. The user is to enter an alphanumeric string of up to 32 characters to identify this VLAN.
- `spvid <vlanid 1–4094>` – The VLAN ID of the service provider VLAN. The user is to identify this VLAN with a number between 1 and 4094.
- `tpid <hex 0x0–0xffff>` – The tag protocol ID. This ID, identified here in hex form, will help identify packets to devices as Q-in-Q VLAN tagged packets. The default setting is 0x8100.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To create a Q-in-Q VLAN on the Switch called “Tiberius”:

```
DGS-3426:5#create double_vlan Tiberius spvid 6 tpid 0x9100
Command: create double_vlan Tiverius spvid 6 tpid 0x9100
Success.
DGS-3426:5#
```
config double_vlan

Purpose
Used to configure the parameters for a previously created Q-in-Q VLAN (Double VLAN) on the Switch.

Syntax
```
config double_vlan <vlan_name> {[[add | access | uplink] | delete] <portlist> | tpid <hex 0x0–0xffff>}
```

Description
This command is used to configure a Q-in-Q VLAN (service provider VLAN) on the Switch.

Parameters
- **vlan <vlan_name 32>** – The name of the Q-in-Q VLAN to be configured. The user is to enter an alphanumeric string of up to 32 characters to identify this VLAN.
- **add** – Specify this parameter to add ports configured in the <portlist> as one of the two following types of ports.
 - **uplink** – Add this parameter to configure these ports as uplink ports. Uplink ports are for connecting Switch VLANs to the Provider VLANs on a remote source. Only gigabit ports can be configured as uplink ports.
 - **access** – Add this parameter to configure these ports as access ports. Access ports are for connecting Switch VLANs to customer VLANs.
 - **portlist** – Enter a list of ports to be added to this VLAN. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- **delete** – Specify this parameter to delete ports configured in the <portlist> from this VLAN.
 - **portlist** – Enter a list of ports to be deleted from this VLAN. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- **tpid <hex 0x0–0xffff>** – The tag protocol ID. This ID, identified here in hex form, will help identify packets to devices as Q-in-Q VLAN tagged packets. The default setting is 0x8100.

Restrictions
Only Administrator and Operator-level users can issue this command. Users must have the Switch enabled for Q-in-Q VLANs.

Example usage:
To add ports 4 through 8 as access ports to the Q-in-Q VLAN “Tiberius”:

```
DGS-3426:5#config double_vlan Tiberius add access 1:4–1:8
Command: config double_vlan Tiberius add access 1:4–1:8
Success.
```

```
DGS-3426:5#
```

To delete ports 4 through 8 on the Q-in-Q VLAN “Tiberius”:

```
DGS-3426:5#config double_vlan Tiberius delete access 1:4–1:8
Command: config double_vlan Tiberius delete access 1:4–1:8
Success.
```

```
DGS-3426:5#
```
DGS-3426:5# config double_vlan Tiberius delete 1:4–1:8
Command: config double_vlan Tiberius delete 1:4–1:8
Success.

DGS-3426:5#

show double_vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the Q-in-Q VLAN settings on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show double_vlan {<vlan_name>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current Q-in-Q VLAN parameters configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>vlan name</code> – Enter the name of a previously created VLAN for which to display the settings.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display parameters for the Q-in-Q VLAN “Tiberius”:

DGS-3426:5# show double_vlan Tiberius
Command: show double_vlan Tiberius

Global Double VLAN : Enabled

=================================
SPVID : 6
VLAN Name : Tiberius
TPID : 0x9200
Uplink ports :
Access ports : 1:4–1:8
Unknown ports :

Total Entries : 1

DGS-3426:5#

enable pvid auto_assign

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable auto-assign PVID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable pvid auto_assign</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable auto-assign PVID.</td>
</tr>
<tr>
<td></td>
<td>If “PVID auto_assign” is disabled, PVID can only be changed by PVID configuration (user changes explicitly). The VLAN configuration has no effect on PVID.</td>
</tr>
<tr>
<td></td>
<td>If “PVID auto_assign” is enabled, PVID will be possibly changed by PVID or VLAN configuration. When a user configures a port to VLAN X’s untagged membership, this port’s PVID will be updated with VLAN X. In the form of VLAN list command, PVID is updated with the last item of VLAN list. When user removes a port from the untagged membership of the PVID’s VLAN, the port’s PVID will be assigned with “default VLAN”. The default setting is enabled.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the auto-assign PVID:
DGS-3426:5# enable pvid auto_assign
Command: enable pvid auto_assign
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>disable pvid auto_assign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>Syntax</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Restrictions</td>
</tr>
</tbody>
</table>

Example usage:

To enable the auto-assign PVID:

DGS-3426:5# disable pvid auto_assign
Command: disable pvid auto_assign
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>show pvid autoAssign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>Syntax</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Restrictions</td>
</tr>
</tbody>
</table>

Example usage:

To display PVID auto-assignment state:

DGS-3426:5# show pvid auto_assign
Command: show pvid auto_assign
PVID Auto-assignment: Enabled
DGS-3426:5#
ISM VLAN COMMANDS

The ISM VLAN commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create igmp_snooping multicast_vlan</td>
<td><vlan_name 32> <vlanid 2–4094></td>
</tr>
<tr>
<td>delete igmp_snooping multicast_vlan</td>
<td><vlan_name 32></td>
</tr>
<tr>
<td>config igmp_snooping multicast_vlan</td>
<td><vlan_name 32> {member_port <portlist></td>
</tr>
<tr>
<td>config igmp_snooping multicast_vlan_group</td>
<td><vlan_name 32> [[add</td>
</tr>
<tr>
<td>show igmp_snooping multicast_vlan</td>
<td>{<vlan_name 32>}</td>
</tr>
<tr>
<td>show igmp_snooping multicast_vlan_group</td>
<td>{<vlan_name 32>}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create igmp_snooping multicast_vlan

Purpose: Used to create an ISM VLAN on the switch.
Syntax: `create igmp_snooping multicast_vlan <vlan_name 32> <vlanid 2–4094>`
Description: This command is used to create a multicast VLAN on the Switch.
Parameters: `<vlan_name 32>` – Specifies the ISM VLAN name, max length is 32
 `<vlanid 2-4094>` – Specifies the ISM VLAN ID.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To create an igmp_snooping multicast_vlan:

```
DGS-3426:5# create igmp_snooping multicast_vlan test 2
Command: create igmp_snooping multicast_vlan test 2
Success.
DGS-3426:5#
```

delete igmp_snooping multicast_vlan

Purpose: Used to delete a previously created ISM VLAN on the Switch.
Syntax: `delete igmp_snooping multicast_vlan <vlan_name 32>`
Description: This command is used to delete a previously created multicast VLAN on the Switch.
Parameters: `<vlan_name 32>` – Specifies the ISM VLAN name, max length is 32.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To delete an ISM VLAN
DGS-3426:5# delete igmp_snooping multicast_vlan test
Command: delete igmp_snooping multicast_vlan test
Success.
DGS-3426:5#

config igmp_snooping multicast_vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure an ISM VLAN on the Switch, add source port, member port to this VLAN, and set state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config igmp_snooping multicast_vlan <vlan_name 32> member_port <portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the settings for a previously created multicast VLAN on the Switch.</td>
</tr>
</tbody>
</table>
| Parameters | `<vlan_name 32>` – Specifies the ISM VLAN name. The maximum length is 32 characters.
`member_port <portlist>` – Add untagged member ports to ISM VLAN, which connect with PC users.
`tag_member_port <portlist>` – Add tagged member ports to ISM VLAN, which connect with PC users.
`source_port <portlist>` – Add source ports to ISM VLAN, which connect with uplink server
`state [enable | disable]` – Enable or disable the ISM VLAN.
`replace_source_ip <ipaddr>` – Specifies the IP address used to replace a source IP address in the received IGMP control packet only if a unicast IP address is valid. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure a member port, source port, set of ISM VLANs:
DGS–3426:5#config vlan default delete 10–20
Command: config vlan default delete 10–20
Success.

DGS–3426:5#create vlan v10
Command: create vlan v10
Success.

DES–3426:4#create vlan v20
Command: create vlan v20
Success.

DGS–3426:5#config vlan v10 add untagged 10
Command: config vlan v10 add untagged 10
Success.

DGS–3426:5#config vlan v20 add untagged 20
Command: config vlan v20 add untagged 20
Success.

DGS–3426:5# config igmp_snooping multicast_vlan test member_port 10,20 source_port 1 state enable
Command: config igmp_snooping multicast_vlan test member_port 10,20 source_port 1 state enable
Success.

DGS–3426:5#

config igmp_snooping multicast_vlan_group

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure multicast group in this ISM VLAN on the switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config igmp_snooping multicast_vlan_group <vlan_name 32> [[add</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the multicast group which will be learned with the specific multicast VLAN.</td>
</tr>
</tbody>
</table>
| Parameters | <vlan_name 32> – Specifies the ISM VLAN name, max length is 32
add|delete – Specifies the action of configured multicast group of this ISM VLAN
add – add multicast group to this ISM VLAN
delete – delete multicast group from this ISM VLAN
mcast_address_list – Specifies the multicast groups being configure in this command
delete_all – Clear all the multicast groups in the ISM VLAN |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure multicast group to an ISM VLAN:
DGS-3426:5# config igmp_snooping multicast_vlan_group test add 225.1.1.1-225.1.1.10,225.1.1.20

Command: config igmp_snooping multicast_vlan_group test add 225.1.1.1-225.1.1.10,225.1.1.20

Success.

DGS-3426:5#

show igmp_snooping multicast_vlan

Purpose
Used to display an ISM VLAN on the Switch.

Syntax
```
show igmp_snooping multicast_vlan {<vlan_name 32>}
```

Description
This command is used to display the settings of a multicast VLAN on the Switch.

Parameters
- `<vlan_name 32>` – Specifies the ISM VLAN name, max length is 32

Restrictions
None.

Example usage:
To display an ISM VLAN:

```
DGS-3426:5# show igmp_snooping multicast_vlan
Command: show igmp_snooping multicast_vlan

VLAN Name : test
VID : 2
Member (Untagged) Ports : 1-8
Tagged Member Ports : 10
Source Ports : 9
Status : Enabled
Replace Source IP : 192.18.2.1
Total Entries: 1
```

show igmp_snooping multicast_vlan_group

Purpose
Used to display the ISM VLAN groups on the Switch.

Syntax
```
show igmp_snooping multicast_vlan_group <vlan_name 32>
```

Description
This command is used to display the settings of a multicast VLAN group on the Switch.

Parameters
- `<vlan_name 32>` – Specifies the ISM VLAN name. The maximum length is 32.

Restrictions
None.

Example usage:
To display an ISM VLAN Group:

```
DGS-3426:5# show igmp_snooping multicast_vlan_group
Command: show igmp_snooping multicast_vlan_group

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>VLAN ID</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

DGS-3426:5#
LINK AGGREGATION COMMANDS

The link aggregation commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create link_aggregation group_id</td>
<td><value 1–32> {type [lacp</td>
</tr>
<tr>
<td>delete link_aggregation group_id</td>
<td><value 1–32></td>
</tr>
<tr>
<td>config link_aggregation group_id</td>
<td><value1–32> {master_port <port></td>
</tr>
<tr>
<td>config link_aggregation algorithm</td>
<td>[mac_source</td>
</tr>
<tr>
<td>show link_aggregation</td>
<td>{group_id <value 1–32></td>
</tr>
<tr>
<td>config lacp_port</td>
<td><portlist> mode [active</td>
</tr>
<tr>
<td>show lacp_port</td>
<td><portlist>}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create link_aggregation

Purpose: Used to create a link aggregation group on the Switch.

Syntax: create link_aggregation group_id <value 1–32> {type [lacp | static]}

Description: This command is used to create a link aggregation group with a unique identifier.

Parameters:
- <value>: Specifies the group ID. The Switch allows up to 32 link aggregation groups to be configured. The group number identifies each of the groups.
- type: Specify the type of link aggregation used for the group. If the type is not specified, the default type is static.
 - lacp: This designates the port group as LACP compliant. LACP allows dynamic adjustment to the aggregated port group. LACP compliant ports may be further configured (see config lacp_ports). LACP compliant devices must be connected to LACP compliant devices.
 - static: This designates the aggregated port group as static. Static port groups cannot be changed as easily as LACP compliant port groups since both linked devices must be manually configured if the configuration of the trunked group is changed. If static link aggregation is used, be sure that both ends of the connection are properly configured and that all ports have the same speed/duplex settings.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To create a link aggregation group:

```
DGS-3426:5# create link_aggregation group_id 1
Command: create link_aggregation group_id 1
Success.
DGS-3426:5#
```

NOTE: When using LACP or static type link aggregation, be sure that both sides of the connection are identical in speed and duplex settings.
delete link_aggregation group_id

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a previously configured link aggregation group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>delete link_aggregation group_id <value 1–32></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a previously configured link aggregation group.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><value 1–32></code> – Specifies the group ID. The Switch allows up to 32 link aggregation groups to be configured. The group number identifies each of the groups.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete a link aggregation group:

```
DGS-3426:5#delete link_aggregation group_id 6
Command: delete link_aggregation group_id 6
Success.
DGS-3426:5#
```

config link_aggregation group_id

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure a previously created link aggregation group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config link_aggregation group_id <value 1–32> {master_port <port></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure a link aggregation group that was created with the <code>create link_aggregation</code> command above. The Switch supports link aggregation cross box, which specifies that link aggregation groups may be spread over multiple switches in the switching stack. Up to eight ports can be set per link aggregation group.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>group_id <value 32></code> – Specifies the group ID. The Switch allows up to 32 link aggregation groups to be configured. The group number identifies each of the groups.</td>
</tr>
<tr>
<td></td>
<td><code>master_port <port></code> – Master port ID. Specifies which port (by port number) of the link aggregation group will be the master port. All of the ports in a link aggregation group will share the port configuration with the master port. The port is specified by listing the switch number and the port number on that switch, separated by a colon. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4.</td>
</tr>
<tr>
<td></td>
<td><code>ports <portlist></code> – Specifies a range of ports that will belong to the link aggregation group. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–3,1:7–1:9) Ports may be listed in only one port aggregation group, that is, link aggregation groups may not overlap. Up to eight ports can be set per link aggregation group.</td>
</tr>
<tr>
<td></td>
<td>`state [enable</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command. Link aggregation groups may not overlap.</td>
</tr>
</tbody>
</table>

Example usage:

To define a load–sharing group of ports, group – ID 1, master port 5 with group members ports 5 – 7 plus port 9:
DGS-3426:5# config link_aggregation group_id 1 master_port 1:5 ports 1:5-1:7,1:9
Command: config link_aggregation group_id 1 master_port 1:5 ports 1:5-1:7,1:9
Success.
DGS-3426:5#

config link_aggregation algorithm

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the link aggregation algorithm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config link_aggregation algorithm [mac_source</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the part of the packet examined by the Switch when selecting the egress port for transmitting load-sharing data. This feature is only available using the address-based load-sharing algorithm.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>mac_source</code></td>
<td>Indicates that the Switch should examine the MAC source address.</td>
</tr>
<tr>
<td><code>mac_destination</code></td>
<td>Indicates that the Switch should examine the MAC destination address.</td>
</tr>
<tr>
<td><code>mac_source_dest</code></td>
<td>Indicates that the Switch should examine the MAC source and destination addresses.</td>
</tr>
<tr>
<td><code>ip_source</code></td>
<td>Indicates that the Switch should examine the IP source address.</td>
</tr>
<tr>
<td><code>ip_destination</code></td>
<td>Indicates that the Switch should examine the IP destination address.</td>
</tr>
<tr>
<td><code>ip_source_dest</code></td>
<td>Indicates that the Switch should examine the IP source address and the destination address.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure link aggregation algorithm for mac–source–dest:

DGS-3426:5# config link_aggregation algorithm mac_source_dest
Command: config link_aggregation algorithm mac_source_dest
Success.
DGS-3426:5#

show link_aggregation

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current link aggregation configuration on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show link_aggregation {group_id <value 1–32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current link aggregation configuration of the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code><value 1–32></code></td>
<td>Specifies the group ID. The Switch allows up to 32 link aggregation groups to be configured. The group number identifies each of the groups.</td>
</tr>
<tr>
<td><code>algorithm</code></td>
<td>Allows the display of link aggregation to be specified by the algorithm in use.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the Link Aggregation configuration:
DGS-3426:5#show link_aggregation
Command: show link_aggregation

Link Aggregation Algorithm = MAC-source-dest

Group ID : 1
Type : LACP
Master Port : 1:5
Member Port : 1:5–1:7, 1:9
Active Port :
Status : Disabled
Flooding Port :

DGS-3426:5#

config lacp_port

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure settings for LACP compliant ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config lacp_port <portlist> mode [active</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure ports that have been previously designated as LACP ports (see <code>create link_aggregation</code>).</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><portlist></code> – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order.</td>
</tr>
<tr>
<td></td>
<td><code>mode</code> – Select the mode to determine if LACP ports will process LACP control frames.</td>
</tr>
<tr>
<td></td>
<td>• <code>active</code> – Active LACP ports are capable of processing and sending LACP control frames. This allows LACP compliant devices to negotiate the aggregated link so the group may be changed dynamically as needs require. In order to utilize the ability to change an aggregated port group, that is, to add or subtract ports from the group, at least one of the participating devices must designate LACP ports as active. Both devices must support LACP.</td>
</tr>
<tr>
<td></td>
<td>• <code>passive</code> – LACP ports that are designated as passive can only process LACP control frames and cannot actively send these frames. In order to allow the linked port group to negotiate adjustments and make changes dynamically, at one end of the connection must have “active” LACP ports (see above).</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure LACP port mode settings:

DGS-3426:5#config lacp_port 1:1–1:12 mode active
Command: config lacp_port 1:1–1:12 mode active
Success.
DGS-3426:5#
show lacp_port

Purpose
Used to display current LACP port mode settings.

Syntax
```
show lacp_port {<portlist>}
```

Description
This command is used to display the LACP mode settings as they are currently configured.

Parameters
- `<portlist>` — Specifies a port or range of ports to be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
None.

Example usage:
To display LACP port mode settings:

```
DGS-3426:5#show lacp_port 1:1-1:10
Command: show lacp_port 1:1-1:10

<table>
<thead>
<tr>
<th>Port</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Active</td>
</tr>
<tr>
<td>1:2</td>
<td>Active</td>
</tr>
<tr>
<td>1:3</td>
<td>Active</td>
</tr>
<tr>
<td>1:4</td>
<td>Active</td>
</tr>
<tr>
<td>1:5</td>
<td>Active</td>
</tr>
<tr>
<td>1:6</td>
<td>Active</td>
</tr>
<tr>
<td>1:7</td>
<td>Active</td>
</tr>
<tr>
<td>1:8</td>
<td>Active</td>
</tr>
<tr>
<td>1:9</td>
<td>Active</td>
</tr>
<tr>
<td>1:10</td>
<td>Active</td>
</tr>
</tbody>
</table>

DGS-3426:5#
```
IP–MAC–PORT BINDING (IMPB) COMMANDS

The IP network layer uses a four–byte IP address. The Ethernet link layer uses a six–byte MAC address. Binding these two address types together allows the transmission of data between the layers. The primary purpose of IP–MAC–Port Binding is to restrict the access to a switch to a number of authorized users. Only the authorized client can access the Switch’s port by checking the pair of IP–MAC addresses with the pre–configured white list. If an unauthorized user tries to access an IMPB–enabled port, the system will block the access by dropping its packet. The maximum number of IP–MAC–Port Binding entries is dependant on chip capability (e.g. the ARP table size) and storage size of the device. For the xStack® DGS–3400 Series, the maximum number of IP–MAC–Port Binding entries is 511. The creation of authorized IP–MAC pairs can be manually configured by CLI or Web, or can be learned automatically when DHCP snooping is enabled. The function is port–based, meaning a user can enable or disable the function on the individual port.

ACL Mode

Due to some special cases that have arisen with the IP–MAC–Port Binding, this Switch has been equipped with a special ACL Mode for IP–MAC–Port Binding. When enabled, the Switch will create two entries in the Access Profile Table. The entries may only be created if there are at least two Profile IDs available on the Switch. If not, when the ACL Mode is enabled, an error message will be prompted to the user. When the ACL Mode is enabled, the Switch will only accept packets from a created entry in the IP–MAC–Port Binding Setting window. All others will be discarded. The function is port–based, meaning a user can enable or disable the function on the individual port.

To configure the ACL mode, the user must first set up IP–MAC–Port binding using the create address_binding ip_mac ipaddress command to create an entry. Then the user must enable the mode by entering the config address_binding ports <portlist> mode acl command.

NOTE: When configuring the ACL mode function of the IP–MAC–Port Binding function, please pay close attention to previously set ACL entries. Since the ACL mode entries will fill the first two available access profiles and access profile IDs denote the ACL priority, the ACL mode entries may take precedence over other configured ACL entries. This may render some user–defined ACL parameters inoperable due to the overlapping of settings combined with the ACL entry priority (defined by profile ID). For more information on ACL settings, please see “Configuring the Access Profile” section mentioned previously in this manual.

NOTE: Once ACL profiles have been created by the Switch through the IP–MAC–Port Binding function, the user cannot modify, delete or add ACL rules to these ACL mode access profile entries. Any attempt to modify, delete or add ACL rules will result in a configuration error as seen in the previous figure.

NOTE: When downloading configuration files to the Switch, be aware of the ACL configurations loaded, as compared to the ACL mode access profile entries set by this function, which may cause both access profile types to experience problems.

The IP–MAC–Port Binding commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.
Each command is listed, in detail, in the following sections.

create address_binding ip_mac ipaddress

Purpose
Used to create an IP–MAC-Port Binding entry in the white list.

Syntax
```plaintext
create address_binding ip_mac ipaddress <ipaddr> mac_address <macaddr> {ports [portlist] | all}
```

Description
This command is used to create an IP–MAC-Port Binding entry.

Parameters
- `<ipaddr>` – The IP address of the device where the IP–MAC-Port Binding is made.
- `<macaddr>` – The MAC address of the device where the IP–MAC-Port binding is made.
- `<portlist>` – Specifies a port or range of ports to be configured for address binding. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Specifies that all ports on the switch will be configured for address binding.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create address binding on the Switch:
DGS-3426:5# create address_binding ip_mac ipaddress 10.1.1.3 mac_address 00-00-00-00-04
Command: create address_binding ip_mac ipaddress 10.1.1.3 mac_address 00-00-00-04
Success.
DGS-3426:5#

Once an entry has been created and some IMPB-enabled ports (ACL mode) belong to this entry, the access profile table will look like this:

DGS-3426:5# show access_profile
Command: show access_profile

Access Profile Table

Total Unused Rule Entries: 767
Total Used Rule Entries : 1

Access Profile ID: 1 Type : Ethernet
==
Owner : IP-MAC-PORT Binding
MASK Option :
Ethernet type

Access ID : 1 Mode: Deny
Ports: 2:16

0x800
==
Unused Entries: 127

DGS-3426:5#

The `show access_profile` command will display the two access profiles created and their corresponding rules for every port on the Switch.
config address_binding ip_mac ipaddress

Purpose
Used to configure an IP–MAC-Port Binding entry.

Syntax
```
config address_binding ip_mac ipaddress <ipaddr> mac_address <macaddr>
{ports [ <portlist> | all ]}
```

Description
This command is used to configure an IP–MAC-Port Binding entry.

Parameters
- `<ipaddr>` – The IP address of the device where the IP–MAC-Port binding is made.
- `<macaddr>` – The MAC address of the device where the IP–MAC-Port binding is made.
- `ports [<portlist> | all]` – Used to specify the ports where the IP–MAC-Port binding entry applies. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Specifies that all ports on the switch will be configured for address binding.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure address binding on the Switch:

```
DGS-3426:5#config address_binding ip_mac ipaddress 10.1.1.3 mac_address 00–00–00–00–00–05
Command: config address_binding ip_mac ipaddress 10.1.1.3 mac_address 00–00–00–00–00–05
Success.
DGS-3426:5#
```

config address_binding ip_mac ports

Purpose
Used to configure IMPB settings for specified ports.

Syntax
```
config address_binding ip_mac ports [ <portlist> | all ] {state [enable [ {strict | loose} ] | disable] [allow_zeroip [enable | disable] [forward_dhcppkt [enable | disable] [mode [arp | acl] [stop_learning_threshold <value 0-500>]}] (1)
```

Description
This command is used to configure the per-port state of IP-MAC binding on the Switch. If a port has been configured as a group member of an aggregated link, then it cannot enable the IP-MAC binding function.

When IMPB is enabled on a port, IP packets and/or ARP packets received by this port will be checked depending on the setting. The packet will be dropped if its IP-MAC pair does not match the IMPB white list.

IMPB allows the user to choose either ARP or ACL mode. In ARP Mode, a switch performs ARP Packet Inspection in which it checks the IP-MAC pairs in ARP packets with the IMPB white list and denies unauthorized ones. An advantage of ARP mode is that it does not consume any ACL rules on the Switch. Nonetheless, since the switch only checks ARP packets, it cannot block unauthorized clients who do not send out ARP packets. In ACL Mode, a switch performs IP Packet Inspection in addition to ARP Packet Inspection. ACL rules will be used to permit statically configured IMPB entries and deny other IP packets with the incorrect IP-MAC pairs. The distinct advantage of ACL Mode is that it ensures better security by checking both ARP Packets and IP Packets. However, doing so requires the use of ACL rules. ACL Mode can be viewed as an enhanced version of ARP Mode because ARP Mode is enabled by default when ACL Mode is selected.

There are also two port states: Strict and Loose, and only one state can be selected per port. If a port is set to Strict state, all packets sent to the port are denied (dropped) by default. The Switch will continuously compare all IP and ARP packets it receives on that
config address_binding ip_mac ports

Port with its IMPB entries. If the IP-MAC pair in the packet matches the IMPB entry, the MAC address will be unblocked and subsequent packets sent from this client will be forwarded. On the other hand, if a port is set to Loose state, all packets entering the port are permitted (forwarded) by default. The Switch will continuously compare all ARP packets it receives on that port with its IMPB entries. If the IP-MAC pair in the ARP packet does not match the IMPB list, the MAC address will be blocked and subsequent packets sent from this client will be dropped.

Parameters

- **state** – Configures the address binding port state to enable or disable. When the state is enabled, the port will perform the binding check.
- **strict** – This state provides a stricter method of control. If the user selects this mode, all packets are blocked by the Switch by default. The Switch will compare all incoming ARP and IP Packets and attempt to match them against the IMPB list. If the IP-MAC pair matches the white list entry, the packets from that MAC address are unblocked. If not, the MAC address will stay blocked. While the Strict state uses more CPU resources from checking every incoming ARP and IP packet, it enforces better security and is thus the recommended setting.

The packet isn’t found by the entry, the MAC will be set to block. Other packets will be dropped. The default mode is strict if not specified.
- **loose** – This mode provides a looser way of control. If the user selects loose mode, the Switch will forward all packets by default. However, it will still inspect incoming ARP packets and compare them with the Switch’s IMPB white list entries. If the IP-MAC pair of a packet is not found in the white list, the Switch will block the MAC address. A major benefit of Loose state is that it uses less CPU resources because the Switch only checks incoming ARP packets. However, it also means that Loose state cannot block users who send only unicast IP packets. An example of this is that a malicious user can perform DoS attacks by statically configuring the ARP table on their PC. In this case, the Switch cannot block such attacks because the PC will not send out ARP packets.
- **allow_zeroip** – Specifies whether to allow ARP packets with Source IP address 0.0.0.0. When enabled on a port, all ARP packets with a source IP address of 0.0.0.0 is forwarded; when set to disable, they are blocked.
- **forward_dhcppkt** – By default, the Switch will forward all DHCP packets. However, if the port state is set to Strict, all DHCP packets will be dropped. In that case, enable forward_dhcppkt so that the port will forward DHCP packets even under Strict state. Enabling this feature also ensures that DHCP snooping works properly.
- **mode** – select to port to use ARP mode or ACL mode. When a port is under ACL mode, the switch will create ACL access entry corresponding to the entries of this port. If the port mode changes to ARP, all the ACL access entries will be deleted automatically. The default mode of the port is ARP mode.
- **stop_learning_threshold<int>** – Enter a stop learning threshold between 0 and 500. Entering 500 means the port will enter the stop learning state after 500 illegal MAC entries and will not allow additional MAC entries, both legal or illegal, to be learned on this port. In the stop learning state, the port will also automatically purge all blocked MAC entries on this port. Traffic from legal MAC entries are still forwarded. Entering 0 means no limit has been set and the port will keep learning illegal MAC addresses.

- **<portlist>** – Specifies a port or range of port to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

- **all** – Specifies all ports on the switch.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure address binding on the Switch:
DGS-3426:5# config address_binding ip_mac ports 1:2 state enable
Command: config address_binding ip_mac ports 1:2 state enable
Success.

DGS-3426:5#

show address_binding

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display IP–MAC-Port Binding entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show address_binding [ip_mac { [all</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display IP–MAC-Port Binding entries. Three different kinds of information can be viewed.</td>
</tr>
<tr>
<td></td>
<td>• ip_mac – Address Binding entries can be viewed by entering the MAC and IP addresses of the device.</td>
</tr>
<tr>
<td></td>
<td>• blocked – Blocked address binding entries (bindings between VLAN names and MAC addresses) can be viewed by entering the VLAN name and the MAC address of the device.</td>
</tr>
<tr>
<td></td>
<td>• ports – Specifies a port or range of ports to be displayed information.</td>
</tr>
<tr>
<td>Parameters</td>
<td>all – Displays all IP-MAC-Port binding entries; for Blocked Address Binding entries, all specifies all the blocked VLANs and their bound MAC addresses.</td>
</tr>
<tr>
<td></td>
<td><ipaddr> – The IP address of the device where the IP–MAC-Port binding is made.</td>
</tr>
<tr>
<td></td>
<td><macaddr> – The MAC address of the device where the IP–MAC-Port binding is made.</td>
</tr>
<tr>
<td></td>
<td><vlan_name> – The VLAN name of the VLAN that is bound to a MAC address in order to block a specific device on a known VLAN.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display IP–MAC-Port Binding on the Switch:

DGS-3426:5# show address_binding ip_mac ipaddress 10.1.1.8 mac_address 00–00–00–00–00–12
Command: show address_binding ip_mac ipaddress 10.1.1.8 mac_address 00–00–00–00–00–12

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Mode</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.8</td>
<td>00–00–00–00–00–12</td>
<td>Static</td>
<td>1:1–1:24</td>
</tr>
</tbody>
</table>

Total entries: 1
delete address_binding

Purpose
Used to delete IP–MAC-Port Binding entries.

Syntax
```
delete address_binding [ip_mac [ip_address <ipaddr> {mac_address <macaddr>} | all] | blocked [all | vlan_name <vlan_name> mac_address <macaddr>]]
```

Description
This command is used to delete IP–MAC-Port Binding entries. Two different kinds of information can be deleted.

- **ip_mac** – Individual Address Binding entries can be deleted by entering the MAC and IP addresses of the device. Toggling to all will delete all the Address Binding entries.

- **blocked** – Blocked address binding entries (bindings between VLAN names and MAC addresses) can be deleted by entering the VLAN name and the MAC address of the device. To delete all the Blocked Address Binding entries, toggle all.

Parameters
- `<ipaddr>` – The IP address of the device where the IP–MAC-Port Binding is made.
- `<macaddr>` – The MAC address of the device where the IP–MAC-Port Binding is made.
- `<vlan_name>` – The VLAN name of the VLAN that is bound to a MAC address in order to block a specific device on a known VLAN.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete an IP–MAC-Port Binding entry on the Switch:

```
DGS-3426:5#delete address-binding ip-mac ipaddress 10.1.1.1 mac_address 00-00-00-00-06
Command: delete address-binding ip-mac ipaddress 10.1.1.1 mac_address 00-00-00-00-06
Success.
DGS-3426:5#
```

enable address_binding trap_log

Purpose
Used to enable the trap/log for the IP–MAC-Port Binding function.

Syntax
```
enable address_binding trap_log
```

Description
This command, along with the `disable address_binding trap_log`, will enable and disable the sending of trap/log messages for IMPB. When enabled, the Switch will send a trap/log message when an ARP packet is received that doesn’t match the IMPB white list.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To enable the sending of IP–MAC-Port Binding trap/log messages on the Switch:

```
DGS-3426:5#enable address_binding trap_log
Command: enable address_binding trap_log
Success.
DGS-3426:5#
```
disable address_binding trap_log

Purpose
Used to disable the trap/log for the IP–MAC-Port Binding function.

Syntax
```
disable address_binding trap_log
```

Description
This command, along with the `enable address_binding trap_log`, will enable and disable the sending of trap/log messages for IMPB. When disabled, the Switch will not send trap/log messages.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To disable the sending of IP–MAC-Port Binding trap/log messages on the Switch:

```
DGS-3426:5#disable address_binding trap_log
Command: disable address_binding trap_log
Success.
DGS-3426:5#
```

debug address_binding

Purpose
Used to configure the address binding debugging feature on the Switch.

Syntax
```
debug address_binding [event | dhcp | all ]
```

Description
This command is used to configure the IPMB debugging feature. The debugging feature is disabled by default.

Parameters
- `event` – The Switch will print out the debug messages when an IMPB module receives ARP/IP packets.
- `dhcp` – The Switch will print out the debug messages when the IMPB module receives the DHCP packets.
- `all` – The Switch will print out all debugging messages.

Restrictions
Only Administrator-level users can issue this command.

Example usage:
To enable debugging of IMP IP packets:

```
DGS-3426:5#debug address_binding event
Command: debug address_binding event
Success.
DGS-3426:5#
```

no debug address_binding

Purpose
Used to disable IMPB debugging on the Switch.

Syntax
```
no debug address_binding
```

Description
This command is used to disable IMPB debugging on the Switch.

Parameters
None.

Restrictions
Only Administrator-level users can issue this command.
Example usage:

To disable IMPB debugging on the Switch:

```
DGS-3426:5#no debug address_binding
Command: no debug address_binding
Success.
DGS-3426:5#
```

enable address_binding dhcp_snoop

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To enable the DHCP snooping option for IMPB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable address_binding dhcp_snoop</code></td>
</tr>
<tr>
<td>Description</td>
<td>If DHCP snooping is enabled, the Switch learns IP-MAC pairs by snooping DHCP packets automatically and then saves them to the IP-MAC-Port Binding white list. This enables a hassle-free configuration because the administrator does not need to manually enter each IMPB entry. A prerequisite for this is that the valid DHCP server's IP-MAC pair must be configured on the Switch's IMPB while list first; otherwise the DHCP server packets will be dropped. DHCP snooping is generally considered to be more secure because it enforces all clients to acquire IP through the DHCP server. Additionally, it makes IP Information auditable because clients cannot manually configure their own IP address. Each DHCP-snooped entry is associated with a lease time. When the lease time expires, the expired entry will be removed from this port. The auto-learned binding entry can be moved from one port to another port if the DHCP snooping function has learned that the MAC address is moved to a different port. In order to avoid conflict where both static entry and DHCP Snooping entry are the same, DHCP Snooping entries will not be created if the IP-MAC entry has already been statically configured.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the address binding auto mode:

```
DGS-3426:5#enable address_binding dhcp_snoop
Command: enable address_binding dhcp_snoop
Success.
DGS-3426:5#
```
disable address_binding dhcp_snoop

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To disable the DHCP snooping option for IMPB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable address_binding dhcp_snoop</td>
</tr>
<tr>
<td>Description</td>
<td>When the DHCP snoop function is disabled, all of the auto-learned binding entries will be removed.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To disable the address binding auto mode:

```
DGS-3426:5#disable address_binding dhcp_snoop
Command: disable address_binding dhcp_snoop
Success.
DGS-3426:5#
```

clear address_binding dhcp_snoop binding_entry

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to clear DHCP-snooped entries on specified ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>clear address_binding dhcp_snoop binding_entry ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to clear the DHCP-snooped entries learned for the specified ports.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ports – Specifies the list of ports on which to clear the DHCP snoop learned entry.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To clear address binding auto mode:

```
DGS-3426:5#clear address_binding dhcp_snoop binding_entry ports 1-3
Command: clear address_binding dhcp_snoop binding_entry ports 1:1-1:3
Success.
DGS-3426:5#
```

show address_binding dhcp_snoop

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To show DHCP-snooped entries on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show address_binding dhcp_snoop {max_entry { ports <portlist> }</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display all DHCP snooping entries.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ports – Specifies the list of ports to be displayed from the DHCP snoop learned entry.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display address binding DHCP snooping:
DGS–3426:5# show address_binding dhcp_snoop
Command: show address_binding dhcp_snoop

DHCP_Snoop : Enabled

DGS–3426:5#

To display an address binding DHCP snoop binding entry:

Note: “Inactive” indicated that the entry is currently inactive due to port link down.

DGS–3426:5# show address_binding dhcp_snoop binding_entry
Command: show address_binding dhcp_snoop binding_entry

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Lease Time(secs)</th>
<th>Port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.62.58.35</td>
<td>00-0B-5D-05-34-0B</td>
<td>35964</td>
<td>1</td>
<td>Active</td>
</tr>
<tr>
<td>10.33.53.82</td>
<td>00-20-c3-56-b2-ef</td>
<td>2590</td>
<td>2</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

Total entries : 2

DGS–3426:5#

To display the address_binding dhcp_snoop max_entry.

DGS–3426:5# show address_binding dhcp_snoop max_entry
Command: show address_binding dhcp_snoop max_entry

<table>
<thead>
<tr>
<th>Port</th>
<th>Max Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:2</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:3</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:4</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:5</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:6</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:7</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:8</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:9</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:10</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:11</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:12</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:13</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:14</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:15</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:16</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:17</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:18</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:19</td>
<td>no_limit</td>
</tr>
<tr>
<td>1:20</td>
<td>no_limit</td>
</tr>
</tbody>
</table>

CTRL+C ESC q Quit SPACE n Next Page ENTER Next Entry a All
config address_binding dhcp_snoop max_entry ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Specifies the maximum number of entries which can be dynamically learned (DHCP snooped) by the specified ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config address_binding dhcp_snoop max_entry ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to specify the maximum number of DHCP snooping entries on specified ports. By default, the per-port maximum entry has no limit.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>portlist</code> – Specifies the list of ports to be configured for the DHCP snoop maximum learned entry.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To set the maximum number of entries that ports 1-23 can learn to 10:

```
DGS-3426:5#config address_binding dhcp_snoop max_entry ports 1-3 limit 10
Command: config address_binding dhcp_snoop max_entry ports 1:1-1:3 limit 10
Success.
DGS-3426:5#
```

config address_binding recover_learning ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To recover a port from the stop learning state to the normal state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config address_binding recover_learning ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to recover the port back to normal state, under which the port will start learning both illegal and legal MAC addresses again.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>portlist</code> – Specifies the list of ports to recover from stopped learning mode.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure address binding recover learning ports:

```
DGS-3426:5#config address_binding recover_learning ports 6-7
Command: config address_binding recover_learning ports 1:6-1:7
Success.
DGS-3426:5#
```
IP COMMANDS (INCLUDING IPV6)

The IP interface commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create ipif</td>
<td>`<ipif_name 12> {<network_address>} <vlan_name 32> {state [enable</td>
</tr>
<tr>
<td>config ipif</td>
<td>`<ipif_name 12> [ipaddress <network_address></td>
</tr>
<tr>
<td>enable ipif</td>
<td>`<ipif_name 12></td>
</tr>
<tr>
<td>disable ipif</td>
<td>`<ipif_name 12></td>
</tr>
<tr>
<td>delete ipif</td>
<td>`[<ipif_name 12> ipv6address <ipv6networkaddr>]</td>
</tr>
<tr>
<td>show ipif</td>
<td><code><ipif_name 12></code></td>
</tr>
<tr>
<td>enable autoconfig*</td>
<td></td>
</tr>
<tr>
<td>disable autoconfig</td>
<td></td>
</tr>
<tr>
<td>show autoconfig</td>
<td></td>
</tr>
<tr>
<td>enable ipif_ipv6_link_local_auto</td>
<td>`<ipif_name 12></td>
</tr>
<tr>
<td>disable ipif_ipv6_link_local_auto</td>
<td>`<ipif_name 12></td>
</tr>
<tr>
<td>show ipif_ipv6_link_local_auto</td>
<td><code><ipif_name 12></code></td>
</tr>
</tbody>
</table>

*See Switch Utility Commands for descriptions of all autoconfig commands.

Each command is listed, in detail, in the following sections.

create ipif

Purpose
Used to create an IP interface on the Switch.

Syntax
```
create ipif `<ipif_name 12> {<network_address>} <vlan_name 32> {state [enable | disable]}`
```

Description
This command is used to create an IP interface.

Parameters
- `<ipif_name 12>` – The name for the IP interface to be created. The user may enter an alphanumeric string of up to 12 characters to define the IP interface.
- `<network_address>` – IP address and netmask of the IP interface to be created. The address and mask information can be specified using the traditional format (for example, 10.1.2.3/255.0.0.0 or in CIDR format, 10.1.2.3/8).
- `<vlan_name 32>` – The name of the VLAN that will be associated with the above IP interface.
- `state [enable | disable]` – Allows the user to enable or disable the IP interface.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create the IP interface, p1 on VLAN Tiberius:
DGS-3426:5# create ipif p1 10.1.1.1/8 Tiberius state enable
Command: create ipif p1 10.1.1.1/8 Tiberius state enable
Success.
DGS-3426:5#

config ipif

Purpose
Used to configure the System IP interface.

Syntax
```
config ipif <ipif_name 12> [ipaddress <network_address> | vlan <vlan_name 32> | state [enable | disable]] (1) | bootp | dhcp | ipv6 ipv6address <ipv6networkaddr>]
```

Description
This command is used to configure an IP interface on the Switch. Users may add one IPv4 address per interface but multiple IPv6 addresses may be added to a single interface. The format of IPv6 address resembles xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx where a set of xxxx represents a 16-bit hexadecimal value (ex. 2D83:0C76:3140:0000:0000:020C:417A:3214).

Parameters
- `<ipif_name 12>` – Enter an alphanumeric string of up to 12 characters to identify this IP interface.
- `ipaddress <network_address>` – IP address and netmask of the IP interface to be created. Users can specify the address and mask information using the traditional format (for example, 10.1.2.3/255.0.0.0 or in CIDR format, 10.1.2.3/8). Only one IPv4 address can be configured per interface.
- `<vlan_name 32>` – The name of the VLAN corresponding to the IP interface.
- `state [enable | disable]` – Allows users to enable or disable the IP interface.
- `bootp` – Allows the selection of the BOOTP protocol for the assignment of an IP address to the Switch’s System IP interface. This method is only for IPv4 addresses and if users manually configure an IPv4 address and set this parameter, the manually set IP address will be overwritten by this protocol.
- `dhcp` – Allows the selection of the DHCP protocol for the assignment of an IP address to the Switch’s System IP interface. If you are using the autoconfig feature, the Switch becomes a DHCP client automatically so it is not necessary to change the ipif settings. This method is only for IPv4 addresses and if users manually configure an IPv4 address and set this parameter, the manually set IP address will be overwritten by this protocol.
- `ipv6 ipv6address <ipv6networkaddr>` – Use this parameter to statically assign an IPv6 address to this interface. This address should define a host address and a network prefix length. Multiple IPv6 addresses can be configured for a single IP interface. Ex: 3ffe:501:ffff:100::1/64. The /64 represents the prefix length of the IPv6 addresses.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the IPv4 interface System:

DGS-3426:5# config ipif System ipaddress 10.48.74.122/8
Command: config ipif System ipaddress 10.48.74.122/8
Success.
DGS-3426:5#

Example usage:

To configure the IPv6 address for IP interface Tiberius:
DGS-3426:5# config ipif Tiberius ipv6 ipv6address 3ffe:501:ffff:100::1/64
Command: config ipif Tiberius ipv6 ipv6address 3ffe:501:ffff:100::1/64
Success.
DGS-3426:5#

show ipif

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the configuration of an IP interface on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show ipif {<ipif_name 12>}</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the configuration of an IP interface on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><ipif_name 12> – The name created for the IP interface which will be viewed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display IP interface settings:

DGS-3426:5# show ipif System
Command: show ipif System

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>: System</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Name</td>
<td>: default</td>
</tr>
<tr>
<td>Interface Admin State</td>
<td>: Enabled</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>: 10.48.74.122/8 (MANUAL)</td>
</tr>
<tr>
<td>IPv6 Link-Local Address</td>
<td>: FE80::217:9AFF:FEBA:72CB/128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>: Zira</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Name</td>
<td>: Tiberius</td>
</tr>
<tr>
<td>Interface Admin State</td>
<td>: Enabled</td>
</tr>
<tr>
<td>IPv4 Address</td>
<td>: 0.0.0.0/0 (MANUAL)</td>
</tr>
<tr>
<td>IPv6 Link-Local Address</td>
<td>: FE80::217:9AFF:FEBA:72CB/128</td>
</tr>
<tr>
<td>IPv6 Global Unicast Address</td>
<td>: 3FFE:501:FFFF:100::1/64</td>
</tr>
</tbody>
</table>

Total Entries : 2

DGS-3426:5#

enable ipif

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable an IP interface on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>enable ipif {<ipif_name 12></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable the IP interface function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><ipif_name 12> – The name of a previously configured IP interface to enable. Enter an alphanumeric entry of up to twelve characters to define the IP interface.</td>
</tr>
<tr>
<td></td>
<td>all – Entering this parameter will enable all the IP interfaces currently configured on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To enable the IPIF function on the Switch:
DGS–3426:5#enable ipif s2
Command: enable ipif s2
Success.
DGS–3426:5#

disable ipif

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the configuration of an IP interface on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`disable ipif {<ipif_name 12></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable an IP interface on the Switch, without altering its configuration values.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><ipif_name 12></code> – The name previously created to define the IP interface. all – Entering this parameter will disable all the IP interfaces currently configured on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To disable the IP interface named “s2”:

DGS–3426:5#disable ipif s2
Command: disable ipif s2
Success.
DGS–3426:5#

delete ipif

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete the configuration of an IP interface on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete ipif {<ipif_name 12></td>
</tr>
<tr>
<td>Description</td>
<td>This command will delete the configuration of an IP interface on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><ipif_name 12></code> – The name of the IP interface to delete. all – Entering this parameter will delete all the IP interfaces currently configured on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To delete the IP interface named s2:

DGS–3426:5#delete ipif s2
Command: delete ipif s2
Success.
DGS–3426:5#
enable autoconfig

Purpose
Used to activate the auto-configuration function for the Switch. This will load a configuration file for current use.

Syntax
`enable autoconfig`

Description
When auto-configuration is enabled on the Switch, the DHCP reply will contain a configuration file and path name. It will then request the file from the TFTP server specified in the reply. When autoconfig is enabled, the ipif settings will automatically become DHCP client.

Parameters
None.

Restrictions
When auto-configuration is enabled, the Switch becomes a DHCP client automatically (same as: `config ipif System dhcp`). The DHCP server must have the TFTP server IP address and configuration file name, and be configured to deliver this information in the data field of the DHCP reply packet. The TFTP server must be running and have the requested configuration file in its base directory when the request is received from the Switch. Consult the DHCP server and TFTP server software instructions for information on loading a configuration file.

Example usage:

To enable auto-configuration on the Switch:

```
DGS-3426:5#enable autoconfig
Command: enable autoconfig
Success.
DGS-3426:5#
```

NOTE: More detailed information for this command and related commands can be found in the section titled Switch Utility Commands.

disable autoconfig

Purpose
Used to disable the auto-configuration function.

Syntax
`disable autoconfig`

Description
When auto-configuration is disabled, the Switch will configure itself using the local configuration file.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To disable the auto-configuration function:

```
DGS-3426:5#disable autoconfig
Command: disable autoconfig
Success.
DGS-3426:5#
```
show autoconfig

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the auto-configuration status.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show autoconfig</code></td>
</tr>
<tr>
<td>Description</td>
<td>The command is used to display the auto-configuration status.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To display the auto-configuration status:

```
DGS–3426:5#show autoconfig
Command: show autoconfig
Autoconfig State: Disabled

DGS–3426:5#
```

enable ipif_ipv6_link_local_auto

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command enables the auto-configuration of link local addresses when no IPv6 address is configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`enable ipif_ipv6_link_local_auto <ipif_name 12></td>
</tr>
<tr>
<td>Description</td>
<td>Enable the auto-configuration of link local addresses when there are no IPv6 addresses explicitly configured. When an IPv6 address is explicitly configured, the link local address will be automatically configured, and the IPv6 processing will be started. When there is no IPv6 address explicitly configured, by default, link local address is not configured and the IPv6 processing will be disabled. By enabling this automatic configuration, the link local address will be automatically configured and IPv6 processing will be started.</td>
</tr>
</tbody>
</table>
| Parameters | `<ipif_name 12>` – The name of the IP interface.
| | `all` – Indicates all IP interfaces. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To enable the automatic configuration of link local address for an interface:

```
DGS–3426:5#enable ipif_ipv6_link_local_auto all
Command: enable ipif_ipv6_link_local_auto all
Success.

DGS–3426:5#
```
disable ipif_ipv6_link_local_auto

Purpose
Disables the auto configuration of link local addresses when no IPv6 addresses are configured.

Syntax
```
disable ipif_ipv6_link_local_auto [<ipif_name 12> | all ]
```

Description
This command is used to disable the auto-configuration of link local addresses when no IPv6 address is explicitly configured.

Parameters
- `<ipif_name 12>` – The name of the IP interface.
- `all` – Indicates all IP interfaces.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To disable the automatic configuration of link local address for an interface:

```
DGS-3426:5#disable ipif_ipv6_link_local_auto System
Command: disable ipif_ipv6_link_local_auto System
Success.
DGS-3426:5#
```

show ipif_ipv6_link_local_auto

Purpose
Displays the link local address automatic configuration state.

Syntax
```
show ipif_ipv6_link_local_auto {<ipif_name 12>}
```

Description
This command is used to display the link local address automatic configuration state.

Parameters
- `<ipif_name 12>` – The name created for the IP interface.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To display the link local address automatic configuration state:

```
DGS-3426:5#show ipif_ipv6_link_local_auto
Command: show ipif_ipv6_link_local_auto

IPIF: System  Automatic Link Local Address: Disabled

DGS-3426:5#
```
The following commands are used to detect IPv6 neighbors of the switch and to keep a running database about these neighbor devices. The IPv6 Neighbor Discovery commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create ipv6 neighbor_cache ipif</td>
<td><ipif_name 12> <ipv6addr> <macaddr></td>
</tr>
<tr>
<td>delete ipv6 neighbor_cache ipif</td>
<td>[<ipif_name 12></td>
</tr>
<tr>
<td>show ipv6 neighbor_cache ipif</td>
<td>[<ipif_name 12></td>
</tr>
<tr>
<td>config ipv6 nd ra ipif</td>
<td><ipif_name 12> [state [enable</td>
</tr>
<tr>
<td>config ipv6 nd ra prefix_option ipif</td>
<td><ipif_name 12> <ipv6networkaddr> [preferred_life_time <uint 0–4294967295></td>
</tr>
<tr>
<td>config ipv6 nd ns ipif</td>
<td><ipif_name 12> retrans_time <uint 0–4294967295></td>
</tr>
<tr>
<td>show ipv6 nd</td>
<td>{ipif <ipif_name 12>}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create ipv6 neighbor_cache ipif

Purpose
Used to add a static IPv6 neighbor.

Syntax
create ipv6 neighbor_cache ipif <ipif_name 12> <ipv6addr> <macaddr>

Description
This command is used to add a static IPv6 neighbor to an existing IPv6 interface previously created on the switch.

Parameters
- <ipif_name 12> – Enter the IPv6 interface name previously created using the create ipif and config ipif commands.
- <ipv6addr> – Enter the IPv6 address of the neighbor device to be added as an IPv6 neighbor of the IP interface previously entered in this command.
- <macaddr> – Enter the MAC address of the neighbor device to be added as an IPv6 neighbor of the IP interface previously entered in this command.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create a static IPv6 neighbor:

```
DGS-3426:5# create ipv6 neighbor_cache ipif Triton 3FFC::1 00:01:02:03:04:05
Command: create ipv6 neighbor_cache ipif Triton 3FFC::1 00:01:02:03:04:05
Success.
DGS-3426:5#
```
delete ipv6 neighbor_cache ipif

Purpose
Used to remove a static IPv6 neighbor.

Syntax
```
delete ipv6 neighbor_cache ipif [ipif_name 12] [all] [ipv6addr] [static |dynamic | all]
```

Description
This command is used to remove a static IPv6 neighbor from an existing IPv6 interface previously created on the switch.

Parameters
- `<ipv6addr>` – Enter the IPv6 address of the neighbor device to be removed from being an IPv6 neighbor of the IP interface previously entered in this command.
- `static` – Enter this command to remove all statically configured neighbor devices from being an IPv6 neighbor of the IP interface previously entered.
- `all` – Enter this parameter to remove all IPv6 neighbors of the switch.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete a static IPv6 neighbor:

```
DGS-3426:5# delete ipv6 neighbor_cache 3FFC::1
Command: delete ipv6 neighbor_cache 3FFC::1
Success.
DGS-3426:5#
```

show ipv6 neighbor_cache ipif

Purpose
Used to view the neighbor cache of an IPv6 interface located on the Switch.

Syntax
```
show ipv6 neighbor_cache ipif [ipif_name 12] [all] [ipv6address <ipv6addr> | static | dynamic | all]
```

Description
This command is used to display the IPv6 neighbors of a configured IPv6 interface currently set on the switch. Users may specify an IP interface, IPv6 address or statically entered IPv6 addresses by which to view the neighbor cache.

Parameters
- `<ipif_name 12>` – Enter the IP interface for which to view IPv6 neighbors. This will display all IPv6 neighbors of this interface.
- `ipv6address <ipv6addr>` – Enter the IPv6 address of the neighbor by which to view this information.
- `static` – Enter this parameter to view all statically entered IPv6 neighbors of the switch.

Restrictions
None.

Example usage:

To display the IPv6 neighbors of a configured IP interface:

```
DGS-3426:5# show ipv6 neighbor_cache ipif Triton
Command: show ipv6 neighbor_cache ipif Triton

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>Linklayer Address</th>
<th>Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE80::20B:6AFF:FECF:7EC6</td>
<td>00:0B:6A:CF:7E:C6</td>
<td>Triton</td>
<td>R</td>
</tr>
</tbody>
</table>

Total Entries : 1

State:
(I) means Incomplete State
(S) means State State
(P) means Probe State
(R) means Reachable State
(D) means Delay State
(T) means Static State
```

DGS-3426:5#
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the parameters for router advertisement packets being sent from the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config ipv6 nd ra ipif <ipif_name_12> {state [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the settings for router advertisement packets being sent from the switch.</td>
</tr>
</tbody>
</table>
| Parameters | `<ipif_name_12>` – Enter the IPv6 interface name that will be dispatching these router advertisements.
`state [enable | disable]` – Use this parameter to enable or disable the sending of router advertisement packets from the IPv6 interface name previously stated.
`life_time <value 0–9000>` – This time represents the validity of this IPv6 interface to be the default router for the link–local network. A value of 0 represents that this Switch should not be recognized as the default router for this link–local network. The user may set a time between 0 and 9000 seconds with a default setting of 1800 seconds.
`reachable_time <value 0–3600000>` – This field will set the time that remote IPv6 nodes are considered reachable. In essence, this is the Neighbor Unreachability Detection field once confirmation of the access to this node has been made. The user may set a time between 0 and 3600000 milliseconds with a default setting of 1200000 milliseconds. A very low value is not recommended.
`retrans_time <uint 0–4294967295>` – Used to set an interval time between 0 and 4294967295 milliseconds for the dispatch of router advertisements by this interface over the link–local network, in response to a Neighbor Solicitation message. If this Switch is set as the default router for this local link, this value should not exceed the value stated in the Life Time field previously mentioned. Setting this field to zero will specify that this switch will not specify the Retransmit Time for the link–local network. (and therefore will be specified by another router on the link–local network. The default value is 0 milliseconds.
`hop_limit <value 0–255>` – This field sets the number of nodes that this Router Advertisement packet will pass before being dropped. This number is set to depreciate by one after every node it reaches and will be dropped once the Hop Limit reaches 0. The user may set the Hop Limit between 0 and 255 with a default value of 64.
`managed_flag [enable | disable]` – Used to enable or disable the Managed flag. When enabled, this will trigger the router to use a stateful autoconfiguration process to get both Global and link–local IPv6 addresses for the Switch. The default setting is Disabled.
`other_config_flag [enable | disable]` – Used to enable or disable the alternate configuration flag. When enabled, this will trigger the router to use a stateful autoconfiguration process to get configuration information that is not address information, yet is important to the IPv6 settings of the Switch. The default setting is Disabled.
`min_rtr_adv_interval <value 3–1350>` – Used to set the minimum interval time between the dispatch of router advertisements by this interface over the link–local network. This entry must be no less than 3 seconds and no more than .75 (3/4) of the MaxRtrAdvInterval. The user may configure a time between 3 and 1350 seconds with a default setting of 198 seconds.
`max_rtr_adv_interval <value 4–1800>` – Used to set the maximum interval time between the dispatch of router advertisements by this interface over the link–local network. This entry must be no less than 4 seconds (4000 milliseconds) and no more than 1800 seconds. The user may configure a time between 4 and 1800 seconds with a default setting of 600 seconds. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure the parameters for the Router Advertisements:
config ipv6 nd ra prefix_option ipif

Purpose
Used to configure the parameters for the prefix option of the router advertisements.

Syntax
```
config ipv6 nd ra prefix_option ipif <ipif_name 12> <ipv6networkaddr>
{preferred_life_time <uint 0–4294967295> | valid_life_time <value 0–4294967295> |
on_link_flag [enable | disable] | autonomous_flag [enable | disable]} (1)
```

Description
This command is used to configure the parameters for the prefix option located in the router advertisements. Users may set a prefix for Global Unicast IPv6 addresses to be assigned to other nodes on the link–local network. This prefix is carried in the Router Advertisement message to be shared on the link–local network. The user must first have a Global Unicast Address set for the Switch.

Parameters
- `<ipif_name 12>` – Enter the IPv6 interface name that will be dispatching these router advertisements.
- `<ipv6networkaddr>` – Enter the IPv6 prefix for Global Unicast IPv6 addresses to be assigned to other nodes on the link–local network. This prefix is carried in the Router Advertisement message to be shared on the link–local network. The user must first have a Global Unicast Address set for the Switch.
- `preferred_life_time <uint 0–4294967295>` – This field states the time that this prefix is advertised as being preferred on the link local network, when using stateless address configuration. The user may configure a time between 0 and 4294967295 milliseconds, with a default setting of 604800 milliseconds.
- `valid_life_time <value 0–4294967295>` – This field states the time that this prefix is advertised as valid on the link local network, when using stateless address configuration. The user may configure a time between 0 and 4294967295 milliseconds.
- `on_link_flag [enable | disable]` – Setting this field to `enable` will denote, within the IPv6 packet, that the IPv6 prefix configured here is assigned to this link–local network. Once traffic has been successfully sent to these nodes with this specific IPv6 prefix, the nodes will be considered reachable on the link–local network.
- `autonomous_flag [enable | disable]` – Setting this field to `enable` will denote that this prefix may be used to autoconfigure IPv6 addresses on the link–local network.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the prefix option for the interface “Zira”:

```
DGS-3426:5#config ipv6 nd ra prefix_option ipif Zira 3FFE:501:FFFF:100::/64
preferred_life_time 1000 valid_life_time 1000 on_link_flag enable
autonomous_flag enable
Command: config ipv6 nd ra prefix_option ipif Zira 3FFE:501:FFFF:100::/64
preferred_life_time 1000 valid_life_time 1000 on_link_flag enable
autonomous_flag enable
Success.
DGS-3426:5#```
### config ipv6 nd ns ipif

**Purpose**: Used to configure the parameters for Neighbor solicitation messages to be sent from the switch.

**Syntax**: `config ipv6 nd ns ipif <ipif_name 12> retrans_time <uint 0–4294967295>`

**Description**: This command is used to configure the parameters for Neighbor Solicitation messages sent from the switch. These messages are used to detect IPv6 neighbors of the switch.

**Parameters**
- `<ipif_name 12>` – Enter the IPv6 interface name for which to dispatch Neighbor solicitation messages.
- `retrans_time <uint 0–4294967295>` – Use this field to set the interval, in seconds that this Switch will produce Neighbor Solicitation packets to be sent out over the local network. This is used to discover IPv6 neighbors on the local link. The user may select a time between 0 and 4294967295 milliseconds. Very fast intervals, represented by a low number, are not recommended for this field.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

**Example usage**:

To configure IPv6 ND Neighbor Solicitation messages:

```
DGS-3426:5# config ipv6 nd ns ipif Zira retrans_time 1000000
Command: config ipv6 nd ns ipif Zira retrans_time 1000000
Success.
DGS-3426:5#
```

### show ipv6 nd

**Purpose**: Used to display information regarding Neighbor Detection on the switch.

**Syntax**: `show ipv6 nd {ipif <ipif_name 12>}`

**Description**: This command is used to show information regarding the IPv6 Neighbor Detection function of the switch. Users may specify an IP interface for which to view this information.

**Parameters**
- `ipif <ipif_name 12>` – Enter the IP interface of the IPv6 interface for which to view this information. Omitting this parameter will display all information regarding neighbor detection currently set on the switch.

**Restrictions**: Only Administrator and Operator-level users can issue this command.
Example usage:

To display the neighbor detection parameters for IPv6:

```plaintext
DGS-3426:5#show ipv6 nd
Command: show ipv6 nd

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Hop Limit</th>
<th>NS Retransmit Time</th>
<th>Router Advertisement</th>
<th>RA Max Router AdvInterval</th>
<th>RA Min Router AdvInterval</th>
<th>RA Router Life Time</th>
<th>RA Reachable Time</th>
<th>RA Retransmit Time</th>
<th>RA Managed Flag</th>
<th>RA Other Config Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>64</td>
<td>0 (ms)</td>
<td>Disabled</td>
<td>600 (s)</td>
<td>198 (s)</td>
<td>1800 (s)</td>
<td>1200000 (ms)</td>
<td>0 (ms)</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Zira</td>
<td>10</td>
<td>50000 (ms)</td>
<td>Enabled</td>
<td>100 (s)</td>
<td>50 (s)</td>
<td>1000 (s)</td>
<td>10000 (ms)</td>
<td>50000 (ms)</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Prefix Preferred Valid OnLink Autonomous
3FFE:501:FFFF:100::/64 604800 2592000 Enabled Enabled

DGS-3426:5#
The IGMP Snooping commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config igmp_snooping</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>config igmp_snooping querier</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>create igmp_snooping static_group</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>config igmp_snooping static_group</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>delete igmp_snooping static_group</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>show igmp_snooping static_group</td>
<td>{{[vlan <vlan_name 32></td>
</tr>
<tr>
<td>config router_ports</td>
<td><vlan_name 32> [add</td>
</tr>
<tr>
<td>config router_ports_forbidden</td>
<td>< vlan_name 32> [add</td>
</tr>
<tr>
<td>enable igmp_snooping</td>
<td>{forward_mcrouter_only}</td>
</tr>
<tr>
<td>show igmp_snooping</td>
<td>{vlan <vlan_name 32>}</td>
</tr>
<tr>
<td>disable igmp_snooping</td>
<td>{forward_mcrouter_only}</td>
</tr>
<tr>
<td>show igmp snooping group</td>
<td>vlan <vlan_name 32></td>
</tr>
<tr>
<td>show router_ports</td>
<td>{vlan <vlan_name 32>} {{[static</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
config igmp_snooping

Purpose
Used to configure IGMP snooping on the Switch.

Syntax

Description
This command is used to configure IGMP snooping on the Switch.

Parameters
- `vlan <vlan_name 32>` – The name of the VLAN for which IGMP snooping is to be configured.
- `host_timeout <sec 1–16711450>` – Specifies the maximum amount of time a host can be a member of a multicast group without the Switch receiving a host membership report. The default is 260 seconds.

 Note: This parameter is configurable, but will not take effect. The parameter remains in order to be compatible with the older version of the CLI.

- `router_timeout <sec 1–16711450>` – Specifies the maximum amount of time a route can be a member of a multicast group without the Switch receiving a host membership report. The default is 260 seconds.

 Note: This parameter is configurable, but will not take effect. The parameter remains in order to be compatible with the older version of the CLI.

- `leave_timer <sec 1–16711450>` – Specifies the amount of time a Multicast address will stay in the database before it is deleted, after it has sent out a leave group message. The default is 2 seconds.

 Note: This parameter is configurable, but will not take effect. The parameter remains in order to be compatible with the older version of the CLI.

- `state [enable | disable]` – Allows users to enable or disable IGMP snooping for the specified VLAN.

- `fast_leave [enable | disable]` – This parameter allows the user to enable the `fast leave` function. Enabled, this function will allow members of a multicast group to leave the group immediately (without the implementation of the Last Member Query Timer) when an IGMP Leave Report Packet is received by the Switch.

- `report_suppression [enable|disable]` – This parameter allows the user to disable or enable the report suppression function. When report suppression is enabled, the Switch sends the first IGMP report from all hosts for a group to all the multicast routers. The Switch does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure IGMP snooping:

```
DGS-3426:5# config igmp_snooping vlan default host_timeout 250 state enable
Command: config igmp_snooping vlan default host_timeout 250 state enable
Success.
DGS-3426:5#
```
config igmp_snooping querier

Purpose
Used to configure the IGMP snooping querier.

Syntax
```bash
config igmp_snooping querier [ vlan <vlan_name 32> | all ] { query_interval <sec 1-65535> | max_response_time <sec 1-25> | robustness_variable <value 1-255> | last_member_query_interval <sec 1-25> | state [enable|disable] | version <value 1-3> } (1)
```

Description
This command is used to configure the time in seconds between general query transmissions, the maximum time in seconds to wait for reports from members and the permitted packet loss that guarantees IGMP snooping.

Parameters
- **vlan <vlan_name 32>** – The name of the VLAN for which IGMP snooping querier is to be configured.
- **query_interval <sec 1–65535>** – Specifies the amount of time in seconds between general query transmissions. The default setting is 125 seconds.
- **max_response_time <sec 1–25>** – Specifies the maximum time in seconds to wait for reports from members. The default setting is 10 seconds.
- **robustness_variable <value 1–255>** – Provides fine-tuning to allow for expected packet loss on a subnet. The value of the robustness variable is used in calculating the following IGMP message intervals:
 - **Group member interval**—Amount of time that must pass before a multicast router decides there are no more members of a group on a network. This interval is calculated as follows: (robustness variable x query interval) + (1 x query response interval).
 - **Other querier present interval**—Amount of time that must pass before a multicast router decides that there is no longer another multicast router that is the querier. This interval is calculated as follows: (robustness variable x query interval) + (0.5 x query response interval).
 - **Last member query count**—Number of group–specific queries sent before the router assumes there are no local members of a group. The default number is the value of the robustness variable.
 - **By default, the robustness variable is set to 2. You might want to increase this value if you expect a subnet to be lossy. Although 1 is specified as a valid entry, the robustness variable should not be one or problems may arise.**
- **last_member_query_interval <sec 1–25>** – The maximum amount of time between group–specific query messages, including those sent in response to leave–group messages. Users may lower this interval to reduce the amount of time it takes a router to detect the loss of the last member of a group.
- **state [enable | disable]** – Allows the Switch to be specified as an IGMP Querier or Non–querier.
- **version <value 1-3>** – Configure the IGMP version of the query packet which will be sent by the router.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the IGMP snooping querier:

```bash
DGS-3426:5#config igmp_snooping querier vlan default query_interval 123 version 3
Command: config igmp_snooping querier vlan default query_interval 123 version 3
Success.
DGS-3426:5#
```
create igmp_snooping static_group

Purpose
Used to create IGMP snooping static group information on the Switch.

Syntax
create igmp_snooping static_group [vlan <vlan_name 32> | vlanid <vidlist>] <ipaddr>

Description
This command allows the creation of an IGMP snooping static group. Member ports can be added to the static group. The static member and the dynamic member port form the member ports of a group.

The static group will only take effect when IGMP snooping is enabled on the VLAN. For those static member ports, the device needs to emulate the IGMP protocol operation to the querier, and forward the traffic destined to the multicast group to the member ports.

For a layer 3 device, the device is also responsible to route the packet destined for this specific group to static member ports.

The static member port will only affect V2 IGMP operation.

The Reserved IP multicast address 224.0.0.X must be excluded from the configured group. The VLAN must be created first before a static group can be created.

Parameters
- `<vlan <vlan_name 32>>` – The name of the VLAN for which to create IGMP snooping static group information.
- `<vlanid <vidlist>>` – The list of the VLAN IDs for which to create IGMP snooping static group information.
- `<ipaddr>` – The static group address for which to create IGMP snooping static group information.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create a static group 226.1.1.1 for VID 1:

```
DGS-3426:5#create igmp_snooping static_group vlanid 1 226.1.1.1
Command: create igmp_snooping static_group vlanid 1 226.1.1.1
Success.
DGS-3426:5#
```

config igmp_snooping static_group

Purpose
Used to configure the current IGMP snooping static group on the Switch.

Syntax
config igmp_snooping static_group [vlan <vlan_name 32> | vlanid <vidlist>] <ipaddr> [add | delete] <portlist>

Description
This command is used to add or delete ports to/from the given static group.

Parameters
- `<vlan <vlan_name 32>>` – The name of the VLAN for which to configure IGMP snooping static group information.
- `<vlanid <vidlist>>` – The list of the VLAN IDs for which to configure IGMP snooping static group information.
- `<ipaddr>` – The static group address for which to configure IGMP snooping static group information.
- `[add | delete] <portlist>` – Portlist to add or delete.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To add port 5 to static group 226.1.1.1 on VID 1:

```
DGS-3426:5#config igmp_snooping static_group vlanid 1 226.1.1.1 add 5
Command: config igmp_snooping static_group vlanid 1 226.1.1.1 add 5
Success.
DGS-3426:5#
```
DGS-3426:5#config igmp_snooping static_group vlanid 1 226.1.1.1 add 5
Command: config igmp_snooping static_group vlanid 1 226.1.1.1 add 5
Success.
DGS-3426:5#

delete igmp_snooping static_group

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete the current IGMP snooping static group on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>delete igmp_snooping static_group [vlan <vlan_name 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an IGMP snooping static group. It will not affect the IGMP snooping dynamic member ports of a group.</td>
</tr>
<tr>
<td>Parameters</td>
<td>vlan <vlan_name 32> – The name of the VLAN for which to delete IGMP snooping static group information.</td>
</tr>
<tr>
<td></td>
<td>vlanid <vidlist> – The list of the VLAN IDs for which to delete IGMP snooping static group information.</td>
</tr>
<tr>
<td></td>
<td><ipaddr> – The static group address for which to delete IGMP snooping static group information.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To delete a static group 226.1.1.1 on VID 1:

DGS-3426:5#delete igmp_snooping static_group vlanid 1 226.1.1.1
Command: delete igmp_snooping static_group vlanid 1 226.1.1.1
Success.
DGS-3426:5#

show igmp_snooping static_group

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current IGMP snooping static group information on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show igmp_snooping static_group {{vlan <vlan_name 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current IGMP snooping static group information on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>vlan <vlan_name 32> – The name of the VLAN for which to view IGMP snooping static group information, if not specified, all static groups will be displayed.</td>
</tr>
<tr>
<td></td>
<td>vlanid <vidlist> – The list of the VLAN IDs for which to view IGMP snooping static group information, if not specified, all static groups will be displayed.</td>
</tr>
<tr>
<td></td>
<td><ipaddr> – The static group address for which to view IGMP snooping static group information.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To view the current IGMP snooping static group information:

168
DGS-3426:5#show igmp_snooping static_group
Command: show igmp_snooping static_group

<table>
<thead>
<tr>
<th>VLAN ID/Name</th>
<th>IP Address</th>
<th>Static Member Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/default</td>
<td>225.1.1.1</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Total Entries: 1

DGS-3426:5#

config router_ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure ports as static router ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config router_ports <vlan_name 32> [add</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to designate a range of ports as being connected to multicast-enabled routers. This will ensure that all packets with such a router as its destination will reach the multicast-enabled router – regardless of protocol, etc.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><vlan_name 32></code> – The name of the VLAN on which the router port resides.</td>
</tr>
<tr>
<td></td>
<td>`add</td>
</tr>
<tr>
<td></td>
<td><code><portlist></code> – Specifies a port or range of ports that will be configured as router ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To set up static router ports:

```
DGS-3426:5#config router_ports default add 1:1-1:10
Command: config router_ports default add 1:1-1:10
Success.
DGS-3426:5#
```
config router_ports_forbidden

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure ports as forbidden multicast router ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>```config router_ports_forbidden <vlan_name 32> [add</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to designate a port or range of ports as being forbidden to multicast–enabled routers. This will ensure that multicast packets will not be forwarded to this port – regardless of protocol, etc.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code><vlan_name 32></code></td>
<td>The name of the VLAN on which the router port resides.</td>
</tr>
<tr>
<td>`[add</td>
<td>delete]`</td>
</tr>
<tr>
<td><code><portlist></code></td>
<td>Specifies a range of ports that will be configured as forbidden router ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To set up forbidden router ports:

```
DGS-3426:5#config router_ports_forbidden default add 1:2–1:10
Command: config router_ports_forbidden default add 1:2–1:10
Success.
DGS-3426:5#
```

enable igmp_snooping

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable IGMP snooping on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>```enable igmp_snooping {forward_mrouter_only}``</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable IGMP snooping on the Switch. If <code>forward_mrouter_only</code> is specified, the Switch will forward all multicast traffic to the multicast router only. Otherwise, the Switch forwards all multicast traffic to any IP router.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>forward_mrouter_only</code></td>
<td>Specifies that the Switch should only forward all multicast traffic to a multicast–enabled router. Otherwise, the Switch will forward all multicast traffic to any IP router.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable IGMP snooping on the Switch:

```
DGS-3426:5#enable igmp_snooping
Command: enable igmp_snooping
Success.
DGS-3426:5#
```
disable igmp_snooping

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable IGMP snooping on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable igmp_snooping {forward_mcrouter_only}</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable IGMP snooping on the Switch. IGMP snooping can be disabled only if IP multicast routing is not being used. Disabling IGMP snooping allows all IGMP and IP multicast traffic to flood within a given IP interface.</td>
</tr>
<tr>
<td>Parameters</td>
<td>forward_mcrouter_only – Adding this parameter to this command will disable forwarding all multicast traffic to a multicast–enabled routers. The Switch will then forward all multicast traffic to any IP router. Entering this command without the parameter will disable igmp snooping on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable IGMP snooping on the Switch:

```
DGS-3426:5#disable igmp_snooping
Command: disable igmp_snooping
Success.
DGS-3426:5#
```

Example usage:

To disable forwarding all multicast traffic to a multicast–enabled router:

```
DGS-3426:5#disable igmp_snooping forward_mcrouter_only
Command: disable igmp_snooping forward_mcrouter_only
Success.
DGS-3426:5#
```

show igmp_snooping

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show the current status of IGMP snooping on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show igmp_snooping {vlan <vlan_name 32>}</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current IGMP snooping configuration on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>vlan <vlan_name 32> – The name of the VLAN for which to view the IGMP snooping configuration.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display IGMP snooping:

```
DGS-3426:5#show igmp_snooping
```

171
DGS-3426:5#show igmp_snooping
Command: show igmp_snooping

IGMP Snooping Global State : Enabled
Multicast router Only : Enabled

VLAN Name : default
Query Interval : 40
Max Response Time : 10
Robustness Value : 2
Last Member Query Interval : 5
Host Timeout : 90
Router Timeout : 90
Leave Timer : 10
Querier State : Enabled
Querier Router Behavior : Querier
State : Enabled
Fast Leave : Enabled
Report Suppression : Disabled
Receive Query Count : 2220
Send Query Count : 2445
Version : 3

Total Entries: 1

DGS-3426:5#

show router_ports

Purpose Used to display the currently configured router ports on the Switch.

Syntax `show router_ports [vlan <vlan_name 32>] {static | dynamic | forbidden}`

Description This command is used to display the router ports currently configured on the Switch.

Parameters
- `vlan <vlan_name 32>` – The name of the VLAN on which the router port resides.
- `static` – Displays router ports that have been statically configured.
- `dynamic` – Displays router ports that have been dynamically configured.
- `forbidden` – Displays ports that are forbidden from becoming router ports.

Restrictions None.

Example usage:

To display the router ports.

DGS-3426:5#show router_ports
Command: show router_ports

VLAN Name : default
Static router port :
Dynamic router port : 3:2
Forbidden router port :

DGS-3426:5#
show igmp_snooping group

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current IGMP snooping group configuration on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show igmp_snooping group {vlan <vlan_name 32>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current IGMP Snooping Group configuration setup currently configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><vlan_name 32></code> – The name of the VLAN for which to view IGMP snooping group information.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To view the current IGMP snooping group:

```
DGS-3426:5# show igmp_snooping group
Command: show igmp_snooping group

Source/Group : NULL / 226.1.1.1
VLAN Name/VID : default/1
Port Member   : 8
Mode          : EXCLUDE

Total Entries : 1
```

DGS-3426:5#
MLD Snooping Commands

Multicast Listener Discovery (MLD) Snooping is an IPv6 function used similarly to IGMP snooping in IPv4. It is used to discover ports on a VLAN that are requesting multicast data. Instead of flooding all ports on a selected VLAN with multicast traffic, MLD snooping will only forward multicast data to ports that wish to receive this data through the use of queries and reports produced by the requesting ports and the source of the multicast traffic.

MLD snooping is accomplished through the examination of the layer 3 part of an MLD control packet transferred between end nodes and a MLD router. When the switch discovers that this route is requesting multicast traffic, it adds the port directly attached to it into the correct IPv6 multicast table, and begins the process of forwarding multicast traffic to that port. This entry in the multicast routing table records the port, the VLAN ID and the associated multicast IPv6 multicast group address and then considers this port to be a active listening port. The active listening ports are the only ones to receive multicast group data.

MLD Control Messages

Three types of messages are transferred between devices using MLD snooping. These three messages are all defined by three ICMPv6 packet headers, labeled 130, 131 and 132.

1. **Multicast Listener Query** – Similar to the IGMPv2 Host Membership Query for IPv4, and labeled as 130 in the ICMPv6 packet header, this message is sent by the router to ask if any link is requesting multicast data. There are two types of MLD query messages emitted by the router. The General Query is used to advertise all multicast addresses that are ready to send multicast data to all listening ports, and the Multicast Specific query, which advertises a specific multicast address that is also ready. These two types of messages are distinguished by a multicast destination address located in the IPv6 header and a multicast address in the Multicast Listener Query Message.

2. **Multicast Listener Report** – Comparable to the Host Membership Report in IGMPv2, and labeled as 131 in the ICMP packet header, this message is sent by the listening port to the Switch stating that it is interested in receiving multicast data from a multicast address in response to the Multicast Listener Query message.

3. **Multicast Listener Done** – Akin to the Leave Group Message in IGMPv2, and labeled as 132 in the ICMPv6 packet header, this message is sent by the multicast listening port stating that it is no longer interested in receiving multicast data from a specific multicast group address, therefore stating that it is “done” with the multicast data from this address. Once this message is received by the Switch, it will no longer forward multicast traffic from a specific multicast group address to this listening port.

The MLD Snooping commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable mld_snooping</td>
<td>{forward_mrouter_only}</td>
</tr>
<tr>
<td>disable mld_snooping</td>
<td>{forward_mrouter_only}</td>
</tr>
<tr>
<td>config mld_snooping</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>config mld_snooping mrouter_ports</td>
<td><vlan_name 32> [add</td>
</tr>
<tr>
<td>config mld_snooping mrouter_ports_forbidden</td>
<td><vlan_name 32> [add</td>
</tr>
<tr>
<td>config mld_snooping querier</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>show mld_snooping</td>
<td>{vlan <vlan_name 32>}</td>
</tr>
<tr>
<td>show mld_snooping group</td>
<td>{vlan <vlan_name 32>}</td>
</tr>
<tr>
<td>show mld_snooping mrouter_ports</td>
<td>{vlan <vlan_name 32>} {[static</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
enable mld_snooping

Purpose
Used to enable MLD snooping globally on the switch.

Syntax
```
enable mld_snooping {forward_mcrouter_only}
```

Description
This command, in conjunction with the `disable mld_snooping` will enable and disable MLD snooping globally on the switch without affecting configurations.

Parameters
- `forward_mcrouter_only` – Specifies that the Switch should only forward all multicast traffic to a multicast–enabled router. Otherwise, the Switch will forward all multicast traffic to any IP router.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To enable MLD snooping globally on the Switch:
```
DGS-3426:5#enable mld_snooping
Command: enable mld_snooping
Success.
DGS-3426:5#
```

disable mld_snooping

Purpose
Used to disable MLD snooping globally on the switch.

Syntax
```
disable mld_snooping {forward_mcrouter_only}
```

Description
This command, in conjunction with the `enable mld_snooping` will enable and disable MLD snooping globally on the switch without affecting configurations.

Parameters
- `forward_mcrouter_only` – Specify to disable the Switch from forwarding all multicast traffic to a multicast–enabled router. Otherwise, the Switch will forward all multicast traffic to any IP router.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To disable MLD snooping globally on the Switch:
```
DGS-3426:5#disable mld_snooping
Command: disable mld_snooping
Success.
DGS-3426:5#
```
config mld_snooping

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure MLD snooping on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config mld_snooping [vlan <vlan_name 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure MLD snooping on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>vlan <vlan_name 32> – The name of the VLAN for which MLD snooping is to be configured.
 all – Entering this parameter will configure MLD snooping for all VLANs on the Switch.
 node_timeout <sec 1–16711450> – Specifies the link node timeout, in seconds. After this timer expires, this node will no longer be considered as listening node. The user may specify a time between 1 and 16711450 with a default setting of 260 seconds.
 Note: This parameter is configurable, but will not take effect. The parameter remains in order to be compatible with the older version of the CLI.
 router_timeout <sec 1–16711450> – Specifies the maximum amount of time a router can remain in the Switch’s routing table as a listening node of a multicast group without the Switch receiving a node listener report. The user may specify a time between 1 and 16711450 with a default setting of 260 seconds.
 Note: This parameter is configurable, but will not take effect. The parameter remains in order to be compatible with the older version of the CLI.
 done_timer <sec 1–16711450> – Specifies the maximum amount of time a router can remain in the Switch after receiving a done message from the group without receiving a node listener report. The user may specify a time between 1 and 16711450 with a default setting of 2 seconds.
 Note: This parameter is configurable, but will not take effect. The parameter remains in order to be compatible with the older version of the CLI.
 *state [enable</td>
</tr>
</tbody>
</table>

Example usage:

To configure MLD snooping:

```
DGS-3426:5#config mld_snooping vlan default node_timeout 250 state enable
Command : config mld_snooping vlan default node_timeout 250 state enable
Success.
DGS-3426:5#
```
config mld_snooping mrouter_ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure ports as static router ports on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config mld_snooping mrouter_ports <vlan_name 32> [add</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to designate a range of ports as being connected to a multicast-enabled router. This command will ensure that all packets with this router as its destination will reach the multicast-enabled router.</td>
</tr>
</tbody>
</table>
| Parameters | `vlan <vlan_name 32>` – The name of the VLAN on which the router port resides.
`add | delete` – Specify to add or delete ports as router ports.
`<portlist>` – Specify a port or range of ports to be configured as router ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9) |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure MLD snooping multicast router ports:

```
DGS-3426:5# config mld_snooping mrouter_ports default add 1:1–1:10
Command : config mld_snooping mrouter_ports default add 1:1–1:10
Success.
DGS-3426:5#
```

config mld_snooping mrouter_ports_forbidden

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure ports on the Switch as forbidden router ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config mld_snooping mrouter_ports_forbidden <vlan_name 32> [add</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to designate a port or range of ports as being forbidden from being connected to multicast enabled routers. This ensures that these configured forbidden ports will not send out routing packets.</td>
</tr>
</tbody>
</table>
| Parameters | `vlan <vlan_name 32>` – The name of the VLAN on which the router port will be forbidden.
`add | delete` – Specify to add or delete ports as forbidden router ports.
`<portlist>` – Specify a port or range of ports to be configured as forbidden router ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9) |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure MLD snooping forbidden multicast router ports:

```
DGS-3426:5# config mld_snooping mrouter_ports_forbidden default add 1:1–1:10
Command : config mld_snooping mrouter_ports_forbidden default add 1:1–1:10
Success.
DGS-3426:5#
```
DGS-3426:5# config mld_snooping mrouter_ports_forbidden default add 1:11–1:20
Success
DGS-3426:5#

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the timers and settings for the MLD snooping querier for the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config mld_snooping querier [vlan <vlan_name 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the time between general query transmissions, the maximum time to wait for reports from listeners and the permitted packet loss guaranteed by MLD snooping.</td>
</tr>
<tr>
<td>Parameters</td>
<td>vlan <vlan_name 32> – The name of the VLAN for which to configure the MLD querier. all – Specifies all VLANs are to be configured for the MLD querier. query_interval <sec 1–65535> – Specifies the amount of time between general query transmissions. The user may specify a time between 1 and 65535 seconds with a default setting of 125 seconds. max_response_time <sec 1–25> – The maximum time to wait for reports from listeners. The user may specify a time between 1 and 25 seconds with a default setting of 10 seconds. robustness_variable <value 1–255> – Provides fine-tuning to allow for expected packet loss on a subnet. The user may choose a value between 1 and 255 with a default setting of 2. If a subnet is expected to be lossy, the user may wish to increase this interval. last_listener_query_interval <sec 1–25> – The maximum amount of time to be set between group–specific query messages. This interval may be reduced to lower the amount of time it takes a router to detect the loss of a last listener group. The user may set this interval between 1 and 25 seconds with a default setting of 1 second. state [enable</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the MLD snooping querier:

DGS-3426:5# config mld_snooping querier vlan default query_interval 125 state enable
Command : config mld_snooping querier vlan default query_interval 125 state enable
Success.
DGS-3426:5#
NOTE: The robustness variable of the MLD snooping querier is used in creating the following MLD message intervals:

Group Listener Interval – This is the amount of time that must pass before a multicast router decides that there are no more listeners present of a group on a network. Calculated as \((\text{robustness variable} \times \text{query interval}) + (1 \times \text{query interval})\).

Querier Present Interval – This is the amount of time that must pass before a multicast router decides that there are no other querier devices present. Calculated as \((\text{robustness variable} \times \text{query interval}) + (0.5 \times \text{query response interval})\).

Last Listener Query Count – This is the amount of group-specific queries sent before the router assumes there are no local listeners in this group. The default value is the value of the robustness variable.

show mld_snooping

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current status of the MLD snooping function on the Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show mld_snooping (vlan<vlan_name 32>)</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current status of the MLD snooping function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>vlan <vlan_name 32></code> – The name of the VLAN for which to view the MLD snooping configurations.</td>
</tr>
<tr>
<td></td>
<td>If no parameter is specified, the Switch will display all current MLD snooping configurations.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the MLD snooping settings

```
DGS-3426:5#show mld_snooping
Command: show mld_snooping

MLD Snooping Global State : Disabled
Multicast Router Only : Disabled

VLAN Name : default
Query Interval : 125
Max Response Time : 10
Robustness Value : 2
Last Listener Query Interval : 1
Node Timeout : 260
Router Timeout : 260
Done Timer : 2
Querier State : Disabled
Querier Router Behavior : Non-Querier
State : Disabled
Fast Done : Disabled
Version : 2

Total Entries: 1
```

DGS-3426:5#
show mld_snooping group

Purpose
Used to display MLD snooping group configurations on the Switch.

Syntax
show mld_snooping group {vlan <vlan_name 32>}

Description
This command is used to display MLD snooping group configurations on the Switch.

Parameters
- `vlan <vlan_name 32>` – The name of the VLAN for which to view the MLD snooping group configurations.

- If no parameter is specified, the Switch will display all current MLD snooping group configurations.

Restrictions
None.

Example usage:

To display the MLD snooping group settings:

```
DGS-3426:5#show mld_snooping group
Command: show mld_snooping group

Source/Group       : 2001::1         / FF1E::1
VLAN Name/VID      : default/1
Port Member        : 11
Mode               : INCLUDE

Source/Group       : 2001::2         / FF1E::1
VLAN Name/VID      : default/1
Port Member        : 11
Mode               : INCLUDE

Source/Group       : 2001::3         / FF1E::1
VLAN Name/VID      : default/1
Port Member        : 11
Mode               : INCLUDE

Total Entries      : 3
```

DGS-3426:5#

show mld_snooping mrouter_ports

Purpose
Used to display the current router ports set on the Switch.

Syntax
show mld_snooping mrouter_ports {vlan <vlan_name 32>} {{static | dynamic | forbidden}}

Description
This command is used to display the current router ports set on the Switch.

Parameters
- `vlan <vlan_name 32>` – The name of the VLAN on which the router port resides.

- `static` – Displays router ports that have been statically configured.

- `dynamic` – Displays router ports that have been dynamically configured.

- `forbidden` – Displays router ports that have been configured as forbidden.

- If no parameter is specified, the Switch will display all currently configured router ports on the Switch.

Restrictions
None.

Example usage:
To display the MLD snooping multicast router port settings:

```
DGS-3426:5#show mld_snooping mrouter_ports
Commands: show mld_snooping mrouter_ports

VLAN Name : default
Static mrouter port : 1-10
Dynamic mrouter port :
Forbidden mrouter port :

Total Entries : 1

DGS-3426:5#
```
LIMITED IP MULTICAST ADDRESS (IGMP FILTERING)

The Limited IP Multicast Address (IGMP Filtering) commands allow users to specify which multicast address(es) reports are to be received on specified ports on the switch. This function will therefore limit the number of reports received and the number of multicast groups configured on the switch. The user may set an IP address or range of IP addresses to accept reports (Permit) or deny reports (Deny) coming into the specified switch ports. The Limited IP Multicast Address Commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config limited multicast address</td>
<td>`<portlist> {from <multicast_ipaddr> to <multicast_ipaddr> access [permit</td>
</tr>
<tr>
<td>delete limited multicast address</td>
<td>`[all</td>
</tr>
<tr>
<td>show limited multicast address</td>
<td><code>{<portlist>}</code></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

config limited multicast address

Purpose

Used to configure limited IP multicast address range.

Syntax

`config limited multicast address <portlist> {from <multicast_ipaddr> to <multicast_ipaddr> access [permit | deny] | state [enable | disable]} (1)`

Description

This command is used to configure the multicast address range, access level, and state.

Parameters

- `<portlist>` – A port or range of ports to config the limited multicast address. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:1–1:3 specifies switch number 1, port 1–3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `from <multicast_ipaddr>` – Enter the lowest multicast IP address of the range.
- `to <multicast_ipaddr>` – Enter the highest multicast IP address of the range.
- `access` – Choose either `permit` or `deny` to limit or grant access to a specified range of Multicast addresses on a particular port or range of ports.
- `state` – This parameter allows the user to `enable` or `disable` the limited multicast address range on a specific port or range of ports.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the limited multicast address on ports 1–3:

```
DGS-3426:5# config limited multicast address 1:1-1:3 from 224.1.1.1 to 224.1.1.2 access permit state enable
Command: config limited multicast address 1:1-1:3 from 224.1.1.1 to 224.1.1.2 access permit state enable
Success.
DGS-3426:5#
```
delete limited multicast address

Purpose
Used to delete Limited IP multicast address range.

Syntax
delete limited multicast address [all | <portlist>]

Description
This command is used to delete all multicast address ranges or a selected range based on which port or ports the range has been assigned.

Parameters
all – Allows the user to delete all limited multicast addresses that have been configured on the Switch.

<portlist> – Allows the user to delete only those multicast address ranges that have been assigned to a particular port or range of ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To delete the limited multicast address on ports 1–3:

DGS-3426:5#delete limited multicast address 1:1-1:3
Command: delete limited multicast address 1:1-1:3
Success.
DGS-3426:5#

show limited multicast address

Purpose
Used to show per-port Limited IP multicast address range.

Syntax
show limited multicast address {<portlist>}

Description
This command is used to display multicast address range by ports.

Parameters
<portlist> – A port or range of ports on which the limited multicast address range to be shown has been assigned. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Restrictions
None.

Example usage:
To display the limited multicast address on ports 1–3 of module 1:
DGS-3426:5#show limited multicast address 1:1-1:3
Command: show limited multicast address 1:1-1:3

<table>
<thead>
<tr>
<th>Port</th>
<th>From</th>
<th>To</th>
<th>Access</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>224.1.1.1</td>
<td>224.1.1.2</td>
<td>permit</td>
<td>enable</td>
</tr>
<tr>
<td>1:2</td>
<td>224.1.1.1</td>
<td>224.1.1.2</td>
<td>permit</td>
<td>enable</td>
</tr>
<tr>
<td>1:3</td>
<td>224.1.1.1</td>
<td>224.1.1.2</td>
<td>permit</td>
<td>enable</td>
</tr>
</tbody>
</table>

DGS-3426:5#
802.1X COMMANDS

The xStack® DGS–3400 implements the server-side of the IEEE 802.1X Port–based and MAC–based Network Access Control. This mechanism is intended to allow only authorized users, or other network devices, access to network resources by establishing criteria for each port on the Switch that a user or network device must meet before allowing that port to forward or receive frames. The switch also supports 802.1X extensions, which means that as well as granting simple access rights, some controlling parameters can be passed from the authentication server to fine tune the management for the authenticated port/host.

The 802.1X commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable 802.1x</td>
<td></td>
</tr>
<tr>
<td>disable 802.1x</td>
<td></td>
</tr>
<tr>
<td>show 802.1x</td>
<td></td>
</tr>
<tr>
<td>show 802.1x auth_state ports</td>
<td>{<portlist>}</td>
</tr>
<tr>
<td>show 802.1x auth_configuration ports</td>
<td>{<portlist>}</td>
</tr>
<tr>
<td>config 802.1x auth_protocol</td>
<td>[local</td>
</tr>
<tr>
<td>create 802.1x user</td>
<td><username 15></td>
</tr>
<tr>
<td>delete 802.1x user</td>
<td><username 15></td>
</tr>
<tr>
<td>show 802.1x user</td>
<td></td>
</tr>
<tr>
<td>show auth_statistics</td>
<td>{ports <portlist</td>
</tr>
<tr>
<td>show auth_diagnostics</td>
<td>{ports <portlist</td>
</tr>
<tr>
<td>show auth_session_statistics</td>
<td>{ports <portlist</td>
</tr>
<tr>
<td>show auth_client</td>
<td></td>
</tr>
<tr>
<td>show acct_client</td>
<td></td>
</tr>
<tr>
<td>config 802.1x capability ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>config 802.1x auth_parameter ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>config 802.1x init</td>
<td>[port_based ports [<portlist></td>
</tr>
<tr>
<td>config 802.1x auth_mode</td>
<td>[port_based</td>
</tr>
<tr>
<td>config 802.1x reauth</td>
<td>{port_based ports [<portlist></td>
</tr>
<tr>
<td>config radius add</td>
<td><server_index 1–3</td>
</tr>
<tr>
<td>config radius delete</td>
<td><server_index 1–3></td>
</tr>
<tr>
<td>config radius</td>
<td><server_index 1–3</td>
</tr>
<tr>
<td>show radius</td>
<td></td>
</tr>
</tbody>
</table>
Command Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create 802.1x guest_vlan</td>
<td><vlan_name 32></td>
</tr>
<tr>
<td>config 802.1x guest_vlan ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>delete 802.1x guest_vlan</td>
<td>{<vlan_name 32>}</td>
</tr>
<tr>
<td>show 802.1x guest_vlan</td>
<td></td>
</tr>
<tr>
<td>config 802.1x auth_failover</td>
<td>[enable</td>
</tr>
<tr>
<td>config 802.1x fwd_pdu system</td>
<td>[enable</td>
</tr>
<tr>
<td>config 802.1x fwd_pdu ports</td>
<td>[<portlist>[all] [enable</td>
</tr>
<tr>
<td>config 802.1x authorization network radius</td>
<td>[enable</td>
</tr>
<tr>
<td>config 802.1x max_users</td>
<td>[<value 1 – 4000></td>
</tr>
<tr>
<td>config accounting service</td>
<td>[network</td>
</tr>
<tr>
<td>show accounting service</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections

enable 802.1x

Purpose: Used to enable the 802.1X server on the Switch.

Syntax: `enable 802.1x`

Description: This command is used to enable the 802.1X Network Access control server application on the Switch. To select between port–based or MAC–based, use the `config 802.1x auth_mode` command.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To enable 802.1X switch wide:

```
DGS-3426:5#enable 802.1x
Command: enable 802.1x
Success.
DGS-3426:5#
```

disable 802.1x

Purpose: Used to disable the 802.1X server on the Switch.

Syntax: `disable 802.1x`

Description: This command is used to disable the 802.1X Network Access control server application on the Switch. To select between port–based or MAC–based, use the `config 802.1x auth_mode` command.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To disable 802.1X on the Switch:

```
DGS-3426:5#disable 802.1x
Command: disable 802.1x
Success.
DGS-3426:5#
```
DGS-3426:5#disable 802.1x
Command: disable 802.1x
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the 802.1X general configurations on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show 802.1x</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the 802.1X general configurations on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display the 802.1X general authentication configuration:
```
DGS-3426:5# show 802.1x
Command: show 802.1x

802.1X                : Enabled
Authentication Mode    : Port_based
Authentication Protocol : RADIUS_EAP
Authentication Failover : Enabled
Forward EAPOL PDU      : Enabled
Max Users              : No Limit
RADIUS Authorization   : Enabled
```
DGS-3426:5#
show 802.1x auth_configuration ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current configuration of the 802.1X server on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show 802.1x auth_configuration ports <portlist></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the 802.1X Port–based or MAC–based Network Access control local users currently configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><portlist></code> – Specifies a port or range of ports to view. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td>Capability: Authenticator</td>
<td>None</td>
</tr>
<tr>
<td>AdminCtlDir: Both / In</td>
<td>Shows whether a controlled Port that is unauthorized will exert control over communication in both receiving and transmitting directions, or just the receiving direction.</td>
</tr>
<tr>
<td>OpenCtlDir: Both / In</td>
<td>Shows whether a controlled Port that is unauthorized will exert control over communication in both receiving and transmitting directions, or just the receiving direction.</td>
</tr>
<tr>
<td>Port Control: ForceAuth / ForceUnauth / Auto</td>
<td>Shows the administrative control over the port's authorization status. ForceAuth forces the Authenticator of the port to become Authorized. ForceUnauth forces the port to become Unauthorized.</td>
</tr>
<tr>
<td>QuietPeriod</td>
<td>Shows the time interval between authentication failure and the start of a new authentication attempt.</td>
</tr>
<tr>
<td>TxPeriod</td>
<td>Shows the time to wait for a response from a supplicant (user) to send EAP Request / Identity packets.</td>
</tr>
<tr>
<td>SuppTimeout</td>
<td>Shows the time to wait for a response from a supplicant (user) for all EAP packets, except for the Request / Identity packets.</td>
</tr>
<tr>
<td>ServerTimeout</td>
<td>Shows the length of time to wait for a response from a RADIUS server.</td>
</tr>
<tr>
<td>MaxReq</td>
<td>Shows the maximum number of times to retry sending packets to the supplicant.</td>
</tr>
<tr>
<td>ReAuthPeriod</td>
<td>Shows the time interval between successive re– authentications.</td>
</tr>
<tr>
<td>ReAuthenticate: Enabled / Disabled</td>
<td>Shows whether or not to re– authenticate.</td>
</tr>
<tr>
<td>Max_users: Specifies per port maximum number of users. The range is 1 to 128. The default value is 16.</td>
<td>Forward EAPOL PDU On Port: Needs to be configured if the port will forward EAPOL PDU when 802.1X functionality is disabled.</td>
</tr>
</tbody>
</table>

Restrictions: None.

Example usage:

To display the 802.1X authentication configuration:
DGS-3426:5#show 802.1x auth_configuration ports 1:1
Command: show 802.1x auth_configuration ports 1:1

Port number : 1:1
Capability : None
AdminCrlDir : Both
OpenCrlDir : Both
Port Control : Auto
QuietPeriod : 60 sec
TxPeriod : 30 sec
SuppTimeout : 30 sec
ServerTimeout : 30 sec
MaxReq : 2 times
ReAuthPeriod : 3600 sec
ReAuthenticate : Disabled
Forward EAPOL PDU On Port : Disabled
Max Users On port : 16

show 802.1x auth_state ports

Purpose Used to display the current authentication state of the 802.1X server on the Switch.
Syntax show 802.1x auth_state ports <portlist>
Description This command is used to display the current authentication state of the 802.1X Port–
Based or MAC–Based Network Access Control server application on the Switch.
Parameters
<portlist> – Specifies a port or range of ports to be viewed. The port list is specified by
listing the lowest switch number and the beginning port number on that switch, separated
by a colon. Then the highest switch number, and the highest port number of the range
(also separated by a colon) are specified. The beginning and end of the port list range are
separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies
switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and
switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a
comma. (ex: 1:1–1:3,1:7–1:9)

The following details what is displayed:
Ports – Shows the physical port number on the Switch.

Restrictions None.

Example usage:
To display the 802.1X authentication state
If port 1 is in host-based mode:
MAC 00-00-00-00-00-01 is authenticated without VLAN assigned (may be the specified target VLAN does not
exist or target VLAN has not been specified at all), the ID of RX VLAN will be displayed (RX VLAN ID is
4004 in this example).
MAC 00-00-00-00-00-02 is authenticated with target VLAN assigned, the ID of target VLAN will be displayed
(target VLAN ID is 1234 in this example)
MAC 00-00-00-00-00-03 failed to pass authentication, the VID field will be shown as “-“ indicating that packets
with SA 00-00-00-00-00-03 will be dropped no matter which VLAN these packets are from.
MAC 00-00-00-00-00-04 attempts to start authentication, the VID field will be shown as “-“ until authentication
completed.

If port 2 is in port-based mode:
MAC 00-00-00-00-00-10 is the MAC which made port 2 pass authentication, MAC address is followed by “(P)”
to indicate the port-based mode authentication.

If port 3 is linked_down.
Supposed that port 4 is in port-based mode:
MAC 00-00-00-00-00-20 attempts to start authentication, MAC address is followed by “(P)” to indicate the port-based mode authentication.
MAC 00-00-00-00-00-21 failed to pass authentication, MAC address is followed by “(P)” to indicate the port-based mode authentication.

Note: In port-based mode, the VLAN ID field is displayed in the same way as host-based mode.

DGS-3426:5# show 802.1x auth_state ports 1-4

Command: `show 802.1x auth_state ports 1-4`

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC Address</th>
<th>State</th>
<th>VID</th>
<th>Assigned Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00-00-00-00-00-01</td>
<td>Authenticated</td>
<td>4004</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-02</td>
<td>Authenticated</td>
<td>1234</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-03</td>
<td>Blocked</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-04</td>
<td>Authenticating</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>(P) Authenticated</td>
<td>1234</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>(P) Authenticating</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>(P) Blocked</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Total Authenticating Hosts: 2
Total Authenticated Hosts: 3

config 802.1x auth_mode

Purpose: Used to configure the 802.1X authentication mode on the Switch.

Syntax: `config 802.1x auth_mode {port_based | mac_based}`

Description: This command is used to enable either the port-based or MAC-based 802.1X authentication feature on the Switch.

Parameters: `[port_based | mac_based]` – The Switch allows users to authenticate 802.1X by either port or MAC address.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure 802.1X authentication by MAC address:

DGS-3426:5# config 802.1x auth_mode mac_based

Command: `config 802.1x auth_mode mac_based`

Success.

DGS-3426:5#
config 802.1x capability ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the 802.1X capability of a range of ports on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config 802.1x capability ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command has four capabilities that can be set for each port. Authenticator, Supplicant, Authenticator and Supplicant, and None.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><portlist></code> – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td></td>
<td><code>all</code> – Specifies all of the ports on the Switch.</td>
</tr>
<tr>
<td></td>
<td><code>authenticator</code> – A user must pass the authentication process to gain access to the network.</td>
</tr>
<tr>
<td></td>
<td><code>none</code> – The port is not controlled by the 802.1X functions.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure 802.1X capability on ports 1 to 10 of module 1:

```
DGS-3426:5#config 802.1x capability ports 1:1 - 1:10 authenticator
Command: config 802.1x capability ports 1:1 - 1:10 authenticator
Success.
DGS-3426:5#
```
config 802.1x auth_parameter ports

Purpose
Used to configure the 802.1X Authentication parameters on a range of ports. The default parameter will return all ports in the specified range to their default 802.1X settings.

Syntax
config 802.1x auth_parameter ports [<portlist>] [all] [default | { direction [both | in] }] [port_control [force_unauth | auto | force_auth]] [quiet_period <sec 0-65535>] [tx_period <sec 1-65535>] [supp_timeout <sec 1-65535>] [server_timeout <sec 1-65535>] [max_req <value 1-10>] [reauth_period <sec 1-65535>] [max_users [<value 1-128> | no_limit]] [enable_reauth [enable | disable]]

Description
This command is used to configure the 802.1X Authentication parameters on a range of ports. The default parameter will return all ports in the specified range to their default 802.1X settings.

Parameters
- <portlist> – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- all – Specifies all of the ports on the Switch.
- default – Returns all of the ports in the specified range to their 802.1X default settings.
- direction [both | in] – Determines whether a controlled port blocks communication in both the receiving and transmitting directions, or just the receiving direction.
- port_control – Configures the administrative control over the authentication process for the range of ports. The user has the following authentication options:
 - force_auth – Forces the Authenticator for the port to become authorized. Network access is allowed.
 - auto – Allows the port’s status to reflect the outcome of the authentication process.
 - force_unauth – Forces the Authenticator for the port to become unauthorized. Network access will be blocked.
- quiet_period <sec 0–65535> – Configures the time interval between authentication failure and the start of a new authentication attempt.
- tx_period <sec 1–65535> – Configures the time to wait for a response from a supplicant (user) to send EAP Request/Identity packets.
- supp_timeout <sec 1–65535> – Configures the time to wait for a response from a supplicant (user) for all EAP packets, except for the Request/Identity packets.
- server_timeout <sec 1–65535> – Configures the length of time to wait for a response from a RADIUS server.
- max_req <value 1–10> – Configures the number of times to retry sending packets to a supplicant (user).
- reauth_period <sec 1–65535> – Configures the time interval between successive re-authentications.
- max_users [<value 1-128> | no_limit] – Specifies per port maximum number of users. The range is 1 to 128. The default value is 16.
- enable_reauth [enable | disable] – Determines whether or not the Switch will re-authenticate. Enabled causes re-authentication of users at the time interval specified in the Re-authentication Period field, above.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure 802.1X authentication parameters for ports 1 to 20 on module 1:
DGS-3426:5# config 802.1x auth_parameter ports 1:1-1:20 direction both
Command: config 802.1x auth_parameter ports 1:1-1:20 direction both
Success.

DGS-3426:5#

config 802.1x init

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to initialize the 802.1X function on a range of ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config 802.1x init {port_based ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to immediately initialize the 802.1X functions on a specified range of ports or for specified MAC addresses operating from a specified range of ports.</td>
</tr>
<tr>
<td>Parameters</td>
<td>port_based – This instructs the Switch to initialize 802.1X functions based only on the port number. Ports approved for initialization can then be specified.</td>
</tr>
<tr>
<td></td>
<td>mac_based – This instructs the Switch to initialize 802.1X functions based only on the MAC address. MAC addresses approved for initialization can then be specified.</td>
</tr>
<tr>
<td></td>
<td>ports <portlist> – Specifies a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td></td>
<td>all – Specifies all of the ports on the Switch.</td>
</tr>
<tr>
<td></td>
<td>mac_address <macaddr> – Enter the MAC address to be initialized.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To initialize the authentication state machine of all ports:

DGS-3426:5# config 802.1x init port_based ports all
Command: config 802.1x init port_based ports all
Success.

DGS-3426:5#
config 802.1x reauth

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the 802.1X re–authentication feature of the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config 802.1x reauth {port_based ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to re–authenticate a previously authenticated device based on port number.</td>
</tr>
</tbody>
</table>
| Parameters | `port_based` – This instructs the Switch to re–authorize 802.1X functions based only on the port number. Ports approved for re–authorization can then be specified.
`mac_based` – This instructs the Switch to re–authorize 802.1X functions based only on the MAC address. MAC addresses approved for re–authorization can then be specified.
`ports <portlist>` – Specifies a port or range of ports to be re–authorized. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order.
`all` – Specifies all of the ports on the Switch.
`mac_address <macaddr>` – Enter the MAC address to be re–authorized. |
| Restrictions | Only Administrator and Operator–level users can issue this command. |

Example usage:

To configure 802.1X reauthentication for ports 1:1–1:18:

```
DGS–3426:5#config 802.1x reauth port_based ports 1:1–1:18
Command: config 802.1x reauth port_based ports 1:1–1:18
Success.
DGS–3426:5#
```
config radius add

Purpose
Used to configure the settings the Switch will use to communicate with a RADIUS server.

Syntax
config radius add <server_index 1–3> <server_ip> key <passwd 32> [default | {auth_port <udp_port_number 1–65535> | acct_port <udp_port_number 1–65535> | timeout <int 1-255> | retransmit <int 1-20>}]\]

Description
This command is used to configure the settings the Switch will use to communicate with a RADIUS server.

Parameters
<server_index 1–3> – Assigns a number to the current set of RADIUS server settings. Up to three groups of RADIUS server settings can be entered on the Switch.
<server_ip> – The IP address of the RADIUS server.
key – Specifies that a password and encryption key will be used between the Switch and the RADIUS server.
<passwd 32> – The shared-secret key used by the RADIUS server and the Switch. Up to 32 characters can be used.
default – Uses the default UDP port number in both the “auth_port” and “acct_port” settings.
auth_port <udp_port_number 1–65535> – The UDP port number for authentication requests. The default is 1812.
acct_port <udp_port_number 1–65535> – The UDP port number for accounting requests. The default is 1813.
timeout <int 1-255> - The time in second for waiting server reply. The default is 5 seconds.
retransmit <int 1-20> - The count for re-transmit. The default is 2.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the RADIUS server communication settings:

DGS-3426:5#config radius add 1 10.48.74.121 key dlink default
Command: config radius add 1 10.48.74.121 key dlink default
Success.
DGS-3426:5#

config radius delete

Purpose
Used to delete a previously entered RADIUS server configuration.

Syntax
config radius delete <server_index 1–3>

Description
This command is used to delete a previously entered RADIUS server configuration.

Parameters
<server_index 1–3> – Assigns a number to the current set of RADIUS server settings. Up to three groups of RADIUS server settings can be entered on the Switch.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To delete previously configured RADIUS server communication settings:
DGS-3426:5#config radius delete 1
Command: config radius delete 1
Success.
DGS-3426:5#

config radius

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the Switch’s RADIUS settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config radius <server_index 1-3> {ipaddress <server_ip></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the Switch’s RADIUS settings.</td>
</tr>
<tr>
<td>Parameters</td>
<td><server_index 1–3> – Assigns a number to the current set of RADIUS server settings. Up to three groups of RADIUS server settings can be entered on the Switch. ipaddress <server_ip> – The IP address of the RADIUS server. key – Specifies that a password and encryption key will be used between the Switch and the RADIUS server. • <passwd 32> – The shared–secret key used by the RADIUS server and the Switch. Up to 32 characters can be used. auth_port <udp_port_number 1–65535> – The UDP port number for authentication requests. The default is 1812. acct_port <udp_port_number 1–65535> – The UDP port number for accounting requests. The default is 1813. timeout <int 1-255> – The time in seconds, that will wait for a reply from the server. If the corresponding global parameter is supported, by default, the value will follow the global settings. Otherwise, the default value is 5 seconds. retransmit <int 1-20> – The count for re-transmit. If the corresponding global parameter is supported, by default, the value will follow the global settings. Otherwise, the default value is 2.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the RADIUS settings:

DGS-3426:5#config radius 1 auth_port 60 retransmit 1
Command: config radius 1 auth_port 60 retransmit 1
Success.
DGS-3426:5#

show radius

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current RADIUS configurations on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show radius</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current RADIUS configurations on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display RADIUS settings on the Switch:

```
DGS-3426:5# show radius
Command: show radius

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>Auth-Port</th>
<th>Acct-Port</th>
<th>Timeout</th>
<th>Retransmit</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.1</td>
<td>1812</td>
<td>1813</td>
<td>5</td>
<td>2</td>
<td>switch</td>
</tr>
<tr>
<td>1</td>
<td>20.1.1.1</td>
<td>1812</td>
<td>1813</td>
<td>4</td>
<td>2</td>
<td>swkey</td>
</tr>
<tr>
<td>1</td>
<td>30.1.1.1</td>
<td>1812</td>
<td>1813</td>
<td>5</td>
<td>3</td>
<td>dgs3426</td>
</tr>
</tbody>
</table>

Total Entries: 3
```

create 802.1x user

Purpose
Used to create a new 802.1X user.

Syntax
`create 802.1x user <username 15>`

Description
This command is used to create new 802.1X users.

Parameters
`<username 15>` – A username of up to 15 alphanumeric characters in length.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create an 802.1X user:

```
DGS-3426:5# create 802.1x user RG
Command: create 802.1x user RG
Enter a case-sensitive new password:******
Enter the new password again for confirmation:******
Success.
```

show 802.1x user

Purpose
Used to display the 802.1X user accounts on the Switch.

Syntax
`show 802.1x user`

Description
This command is used to display the 802.1X Port–based or MAC–based Network Access control local users currently configured on the Switch.

Parameters
None.

Restrictions
None.

Example usage:

To view 802.1X users currently configured on the Switch:
DGS-3426:5# show 802.1x user
Command: show 802.1x user

Current Accounts:
Username Password
----------- -----------
1 123

Total Entries: 1

DGS-3426:5#

delete 802.1x user

Purpose: Used to delete an 802.1X user account on the Switch.
Syntax: delete 802.1x user <username 15>
Description: This command is used to delete the 802.1X Port–based or MAC–based Network Access control local users currently configured on the Switch.
Parameters: <username 15> – A username can be as many as 15 alphanumeric characters.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To delete 802.1X users:

DGS-3426:5# delete 802.1x user Rob
Command: delete 802.1x user Rob
Are you sure to delete the user?(y/n)
Success.

DGS-3426:5#

config 802.1x auth_protocol

Purpose: Used to configure the 802.1X authentication protocol on the Switch.
Syntax: config 802.1x auth_protocol [local | radius_eap]
Description: This command enables configuration of the authentication protocol.
Parameters: [local | radius_eap] – Specify the type of authentication protocol desired.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the authentication protocol on the Switch:

DGS-3426:5# config 802.1x auth_protocol local
Command: config 802.1x auth_protocol local
Success.

DGS-3426:5#
show acct_client

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current RADIUS accounting client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show acct_client</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current RADIUS accounting client currently configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To view the current RADIUS accounting client:

DGS-3426:5#show acct_client
Command: show acct_client

radiusAcctClient =>
 radiusAcctClientIdentifier

radiusAuthServerEntry =>
 radiusAuthServerIndex : 1

 radiusAccServerAddress 0.0.0.0
 radiusAccServerPortNumber 0
 radiusAccClientRoundTripTime 0
 radiusAccClientRequests 0
 radiusAccClientRetransmissions 0
 radiusAccClientResponses 0
 radiusAccClientMalformedResponses 0
 radiusAccClientBadAuthenticators 0
 radiusAccClientPendingRequests 0
 radiusAccClientTimeouts 0
 radiusAccClientUnknownTypes 0
 radiusAccClientPacketsDropped 0

show auth_client

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current RADIUS authentication client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show auth_client</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current RADIUS authentication client currently configured on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To view the current RADIUS authentication client:
DGS-3426:5#show auth_client
Command: show auth_client

radiusAuthClient ==>
radiusAuthClientInvalidServerAddresses 0
radiusAuthClientIdentifier

radiusAuthServerEntry ==>
radiusAuthServerIndex :1

radiusAuthServerAddress 0.0.0.0
radiusAuthClientServerPortNumber 0
radiusAuthClientRoundTripTime 0
radiusAuthClientAccessRequests 0
radiusAuthClientAccessRetransmissions 0
radiusAuthClientAccessAccepts 0
radiusAuthClientAccessRejects 0
radiusAuthClientAccessChallenges 0
radiusAuthClientMalformedAccessResponses 0
radiusAuthClientBadAuthenticators 0
radiusAuthClientPendingRequests 0
radiusAuthClientTimeouts 0
radiusAuthClientUnknownTypes 0
radiusAuthClientPacketsDropped 0

CTRL+C ESC q Quit SPACE n Next Page p Previous Page r Refresh

show auth_diagnostics

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current authentication diagnostics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show auth_diagnostics {ports [<portlist></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current authentication diagnostics of the Switch on a per port basis.</td>
</tr>
</tbody>
</table>
| Parameters | ports <portlist> – Specifies a range of ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
| all – Specifies that all ports will be viewed. |

Restrictions

Example usage:

To display the current authentication diagnostics for port 16 of module 1:
DGS-3426:5# show auth_diagnostics ports 1:16
Command: show auth_diagnostics ports 1:16

Port number : 1:16

EntersConnecting 0
EapLogoffsWhileConnecting 0
EntersAuthenticating 0
SuccessWhileAuthenticating 0
TimeoutsWhileAuthenticating 0
FailWhileAuthenticating 0
ReauthsWhileAuthenticating 0
EapStartsWhileAuthenticating 0
EapLogoffWhileAuthenticating 0
ReauthsWhileAuthenticated 0
EapStartsWhileAuthenticated 0
EapLogoffWhileAuthenticated 0
BackendResponses 0
BackendAccessChallenges 0
BackendOtherRequestsToSupplicant 0
BackendNonNakResponsesFromSupplicant 0
BackendAuthSuccesses 0
BackendAuthFails 0

CTRL+C ESC Q Quit SPACE N Next Page Enter Next Entry A All

--Table--

show auth_session_statistics

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current authentication session statistics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show auth_session_statistics {ports <portlist</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current authentication session statistics of the Switch on a per port basis.</td>
</tr>
</tbody>
</table>
| Parameters | `ports <portlist>` – Specifies a range of ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
`all` – Specifies that all ports will be viewed. |
| Restrictions | None. |

Example usage:

To display the current authentication session statistics for port 16 of module 1:
DGS–3426:5#show auth_session_statistics ports 1:16
Command: show auth_session_statistics ports 1:16

Port number : 1:16

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SessionOctetsRx</td>
<td>0</td>
</tr>
<tr>
<td>SessionOctetsTx</td>
<td>0</td>
</tr>
<tr>
<td>SessionFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>SessionFramesTx</td>
<td>0</td>
</tr>
<tr>
<td>SessionId</td>
<td></td>
</tr>
<tr>
<td>SessionAuthenticMethod</td>
<td>Remote Authentication Server</td>
</tr>
<tr>
<td>SessionTime</td>
<td>0</td>
</tr>
<tr>
<td>SessionTerminateCause</td>
<td>SupplicantLogoff</td>
</tr>
<tr>
<td>SessionUserName</td>
<td>Trinity</td>
</tr>
</tbody>
</table>

CTRL+C ESC q Quit SPACE n Next Page Enter Next Entry a All

show auth_statistics

Purpose
Used to display the current authentication statistics.

Syntax
`show auth_statistics {ports <portlist> | all}`

Description
This command is used to display the current authentication statistics of the Switch on a per port basis.

Parameters
- `ports <portlist>` – Specifies a range of ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Specifies that all ports will be viewed.

Restrictions
None.

Example usage:
To display the current authentication statistics for port 1:16:

DGS–3426:5#show auth_statistics ports 1:16
Command: show auth_statistics ports 1:16

Port number : 1:16

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EapolFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>EapolFramesTx</td>
<td>0</td>
</tr>
<tr>
<td>EapolStartFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>EapolReqIdFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>EapolLogoffFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>EapolReqFramesTx</td>
<td>0</td>
</tr>
<tr>
<td>EapolRespIdFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>EapolRespFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>InvalidEapolFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>EapLengthErrorFramesRx</td>
<td>0</td>
</tr>
<tr>
<td>LastEapolFrameVersion</td>
<td>0</td>
</tr>
<tr>
<td>LastEapolFrameSource</td>
<td>00–00–00–00–00</td>
</tr>
</tbody>
</table>

CTRL+C ESC q Quit SPACE n Next Page Enter Next Entry a All
create 802.1x guest_vlan

Purpose
Used to configure a pre–existing VLAN as a 802.1X Guest VLAN.

Syntax
```
create 802.1x guest_vlan <vlan_name 32>
```

Description
This command is used to configure a pre–defined VLAN as a 802.1X Guest VLAN. Guest 802.1X VLAN clients are those who have not been authorized for 802.1X or they haven’t yet installed the necessary 802.1X software, yet would still like limited access rights on the Switch.

Parameters

- `<vlan_name 32>` – Enter an alphanumeric string of no more than 32 characters to define a pre–existing VLAN as a 802.1X Guest VLAN. This VLAN must have first been created with the `create vlan` command mentioned earlier in this manual.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure a previously created VLAN as a 802.1X Guest VLAN for the Switch.

```
DGS–3426:5# create 802.1x guest_vlan Tiberius
Command: create 802.1x guest_vlan Tiberius
Success.
DGS–3426:5#
```

config 802.1x guest_vlan ports

Purpose
Used to configure ports for a pre–existing 802.1X guest VLAN.

Syntax
```
config 802.1x guest_vlan ports [portlist] state [enable | disable]
```

Description
This command is used to configure ports to be enabled or disabled for the 802.1X Guest VLAN.

Parameters

- `<portlist>` – Specify a port or range of ports to be configured for the 802.1X Guest VLAN. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Specify this parameter to configure all ports for the 802.1X Guest VLAN.
- `state [enable | disable]` – Use these parameters to enable or disable port listed here as enabled or disabled for the 802.1X Guest VLAN.

Restrictions
Only Administrator and Operator-level users can issue this command.

Users must have already previously created a VLAN using the `create vlan` command. If the specific port state changes from an enabled state to a disabled state, these ports will return to the default VLAN.

Example usage:
To configure the ports for a previously created 802.1X Guest VLAN as enabled.

```
DGS–3426:5# config 802.1x guest_vlan ports
Command: config 802.1x guest_vlan ports
Success.
DGS–3426:5#
```
DGS-3426:5# config 802.1x guest_vlan ports 1:1-1:5 state enable
Command: config 802.1x guest_vlan ports 1:1-1:5 state enable
Warning! The ports are moved to Guest VLAN!
Success.
DGS-3426:5#

show 802.1x guest_vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to view the configurations for a 802.1X Guest VLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show 802.1x guest_vlan</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the settings for the VLAN that has been enabled as an 802.1X Guest VLAN. Guest 802.1X VLAN clients are those who have not been authorized for 802.1X or they haven’t yet installed the necessary 802.1X software, yet would still like limited access rights on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To configure the configurations for a previously created 802.1X Guest VLAN.

```
DGS-3426:5# show 802.1x guest_vlan
Command: show 802.1x guest_vlan
Guest VLAN Setting
-------------------------------
Guest VLAN : Tiberius
Enable guest VLAN ports: 1:5-1:8
```

```
DGS-3426:5#
```

delete 802.1x guest_vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a 802.1X Guest VLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>delete 802.1x guest_vlan<\vlan_name_32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an 802.1X Guest VLAN. Guest 802.1X VLAN clients are those who have not been authorized for 802.1X or they haven’t yet installed the necessary 802.1X software, yet would still like limited access rights on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><\vlan_name_32> – Enter the VLAN name of the Guest 802.1X VLAN to be deleted.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To delete a previously created 802.1X Guest VLAN.

```
DGS-3426:5# delete 802.1x guest_vlan Tiberius
Command: delete 802.1x guest_vlan Tiberius
Success.
DGS-3426:5#
```
`config 802.1x auth_failover`

Purpose
Used to configure 802.1X authentication failover.

Syntax
```
config 802.1x auth_failover [enable | disable]
```

Description
When the authentication failover is disabled, if the RADIUS servers are unreachable, the authentication will fail.

When the authentication failover is enabled, if the RADIUS server’s authentication is unreachable, the local database will be used to do the authentication. By default, the state is disabled.

Parameters
- `enable` – Enables the protocol authentication failover.
- `disable` – Disables the protocol authentication failover.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the 802.1X authentication failover

```
DGS-3426:5# config 802.1x auth_failover enable
Command: config 802.1x auth_failover enable
Success.
DGS-3426:5#
```

`config 802.1x fwd_pdu system`

Purpose
Used to configure the forwarding of EAPOL PDU when 802.1X is disabled.

Syntax
```
config 802.1x fwd_pdu system [enable | disable]
```

Description
This is a global setting to control the forwarding of EAPOL PDU. When 802.1X functionality is disabled globally or disabled for a specific port, and 802.1X forward PDU is enabled both globally and for the port, a received EAPOL packet on the port will be flooded in the same VLAN to those ports. The default state is disabled.

Parameters
- `enable` – Enables the 802.1X forward PDU system.
- `disable` – Disables the 802.1X forward PDU system.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure forwarding of EAPOL PDU:

```
DGS-3426:5# config 802.1x fwd_pdu system enable
Command: config 802.1x fwd_pdu system enable
Success.
DGS-3426:5#
```
config 802.1x fwd_pdu ports

Purpose
Used to configure the forwarding of EAPOL PDU.

Syntax
```
config 802.1x fwd_pdu ports [<portlist> | all] [enable | disable]
```

Description
This command is a per port setting used to control the forwarding of EAPOL PDU. When 802.1X functionality is disabled globally or disabled for a specific port, and 802.1X forward PDU is enabled both globally and for the port, a received EAPOL packet on the port will be flooded in the same VLAN to those ports. The default state is disabled.

Parameters
- `<portlist>` - Specifies a port or range of ports to be re-authorized. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 - in numerical order.
- `all` - Specifies all of the ports on the Switch.
- `enable` – Enables the 802.1X forward PDU ports.
- `disable` – Disables the 802.1X forward PDU ports.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure 802.1X forwarding PDU for ports:
```
DGS-3426:5#config 802.1x fwd_pdu ports 1:1-1:2 enable
Command: config 802.1x fwd_pdu ports 1:1-1:2 enable
Success.
DGS-3426:5#
```

config 802.1x authorization network radius

Purpose
The enable authorization command will enable the accepting of an authorized configuration.

Syntax
```
config 802.1x authorization network radius [enable | disable]
```

Description
This command is used to enable or disable the accepting of an authorized configuration. When the authorization is enabled for 802.1X’s RADIUS, the authorized data assigned by the RADIUS server will be accepted if the global authorization network is enabled.

Parameters
- `radius` – If specified to enable, the authorization data assigned by the RADIUS server will be accepted. The default state is enabled.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the authorized data assigned from the RADIUS server.
```
DGS-3426:5#config 802.1x authorization network radius disable
Command: config 802.1x authorization network radius disable
Success.
DGS-3426:5#
```
config 802.1x max_users

Purpose: Used to configure the max number of users that can be learned via 802.1X authentication.

Syntax: `config 802.1x max_users [<value 1-4000> | no_limit]`

Description: The setting is a global limitation on the maximum number of users that can be learned via 802.1X authentication. In addition to the global limitation, per-port maximum users is also limited. It is specified by the `config 802.1x auth_parameter` command.

Parameters:
- `max_users` – Specifies the maximum number of users. By default, there is no limit on the max users.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure 802.1X maximum users:

```
DGS-3426:5# config 802.1x max_users 200
Command: config 802.1x max_users 200
Success.
DGS-3426:5#
```

config accounting service

Purpose: Used to configure the state of the specified RADIUS accounting service.

Syntax: `config accounting service [network | shell | system] state [enable|disable]`

Description: This command is used to enable or disable the specified RADIUS accounting service.

Parameters:
- `network` – Specifies an accounting service for 802.1X port access control. By default, the service is disabled.
- `shell` – Accounting service for shell events: When the user logs in or logs out of the switch (via the console, Telnet, or SSH) when timeout occurs, accounting information will be collected and sent to the RADIUS server. By default, the service is disabled.
- `system` – Specifies accounting service for system events: reset, reboot. By default, the service is disabled.

- `enable` – Enables the specified accounting service.
- `disable` – Disables the specified accounting service.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the accounting service:

```
DGS-3426:5# config accounting service shell state enable
Command: config accounting service shell state enable
Success.
DGS-3426:5#
```

show accounting service

Purpose: Used to show the RADIUS accounting service status on the Switch.

Syntax: `show accounting service`

Description: This command is used to display the state for RADIUS accounting service.

Parameters: None.
show accounting service

| Restrictions | None. |

Example usage:

To display the accounting service:

```
DGS-3426:5#show accounting service
Command: show accounting service

Accounting State
---------------
Network : Disabled
Shell   : Enabled
System  : Disabled

DGS-3426:5#
```
ACCESS CONTROL LIST (ACL) COMMANDS

The xStack® DGS–3400 implements Access Control Lists that enable the Switch to deny network access to specific devices or device groups based on IP settings and MAC address.

Access profiles allows establishment of a criteria to determine whether or not the Switch will forward packets based on the information contained in each packet’s header. These criteria can be specified on a VLAN–by–VLAN basis.

Creating an access profile is divided into two basic parts. First, an access profile must be created using the `create access_profile` command. For example, if you want to deny all traffic to the subnet 10.42.73.0 to 10.42.73.255, you must first create an access profile that instructs the Switch to examine all of the relevant fields of each frame:

```
create access_profile profile_id 1 ip source_ip_mask 255.255.255.0
```

Here we have created an access profile that will examine the IP field of each frame received by the Switch. Each source IP address the Switch finds will be combined with the `source_ip_mask` with a logical AND operation. The `profile_id` parameter is used to give the access profile an identifying number – in this case, 1. The `deny` parameter instructs the Switch to filter any frames that meet the criteria – in this case, when a logical AND operation between an IP address specified in the next step and the `ip_source_mask` match.

The default for an access profile on the Switch is to `permit` traffic flow. To restrict traffic, users must use the `deny` parameter.

Now that an access profile has been created, you must add the criteria the Switch will use to decide if a given frame should be forwarded or filtered. Here, we want to filter any packets that have an IP source address between 10.42.73.0 and 10.42.73.255:

```
config access_profile profile_id 1 add access_id 1 ip source_ip 10.42.73.1 port 1 deny
```

Here we use the `profile_id 1` which was specified when the access profile was created. The `add` parameter instructs the Switch to add the criteria that follows to the list of rules that are associated with access profile 1. For each rule entered into the access profile, you can assign an `access_id` that both identifies the rule and establishes a priority within the list of rules. A lower `access_id` gives the rule a higher priority. In case of a conflict in the rules entered for an access profile, the rule with the highest priority (lowest `access_id`) will take precedence.

The `ip` parameter instructs the Switch that this new rule will be applied to the IP addresses contained within each frame’s header. `source_ip` tells the Switch that this rule will apply to the source IP addresses in each frame’s header. Finally, the IP address 10.42.73.1 will be combined with the `source_ip_mask` 255.255.255.0 to give the IP address 10.42.73.0 to 10.42.73.255.

Due to a chipset limitation, the Switch supports a maximum of 6 access profiles. The rules used to define the access profiles are limited to a total of 768 rules for the Switch. One rule can support ACL per port or per portmap.

The access profile commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create access_profile</code></td>
<td><code>profile_id</code><value 1-6> ethernet {vlan</td>
</tr>
<tr>
<td><code>delete access_profile</code></td>
<td><code>profile_id</code><value 1–6></td>
</tr>
<tr>
<td><code>config access_profile</code></td>
<td><code>profile_id</code><value 1-6></td>
</tr>
</tbody>
</table>
Command Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>show access_profile</td>
<td>{profile_id <value 1–6>}</td>
</tr>
<tr>
<td>enable cpu interface filtering</td>
<td></td>
</tr>
<tr>
<td>disable cpu interface filtering</td>
<td></td>
</tr>
<tr>
<td>create cpu access_profile</td>
<td>[ethernet {vlan</td>
</tr>
<tr>
<td>delete cpu access_profile</td>
<td>[profile_id <value 1–5></td>
</tr>
<tr>
<td>config cpu access_profile</td>
<td>profile_id <value 1–5> [add access_id <value 1–100] [ethernet {vlan <vlan_name 32></td>
</tr>
<tr>
<td>show cpu access_profile</td>
<td>{profile_id <value 1–5>}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
create access_profile (for Ethernet)

Purpose
Used to create an access profile on the Switch by examining the Ethernet part of the packet header. Masks entered can be combined with the values the Switch finds in the specified frame header fields. Specific values for the rules are entered using the `config access_profile` command, below.

Syntax
```plaintext
create access_profile profile_id <value 1–6> [ethernet {vlan | source_mac <macmask 000000000000–ffffffffffff> | destination_mac <macmask 000000000000–ffffffffffff> | 802.1p | ethernet_type} (1)
```

Description
This command is used to create a profile for packets that may be accepted or denied by the Switch by examining the Ethernet part of the packet header. Specific values for rules pertaining to the Ethernet part of the packet header may be defined by configuring the `config access_profile` command for Ethernet, as stated below.

Parameters
- `profile_id <value 1–6>` – Specifies an index number between 1 and 6 that will identify the access profile being created with this command.
- `ethernet` – Specifies that the Switch will examine the layer 2 part of each packet header with emphasis on one or more of the following:
 - `vlan` – Specifies that the Switch will examine the VLAN part of each packet header.
 - `source_mac <macmask>` – Specifies a MAC address mask for the source MAC address. This mask is entered in the following hexadecimal format: 000000000000–FFFFFFFFFFFF
 - `destination_mac <macmask>` – Specifies a MAC address mask for the destination MAC address in the following format: 000000000000–FFFFFFFFFFFF
 - `802.1p` – Specifies that the Switch will examine the 802.1p priority value in the frame’s header.
 - `ethernet_type` – Specifies that the Switch will examine the Ethernet type value in each frame’s header.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create an Ethernet access profile:

```
DGS–3426:5# create access_profile profile_id 1 ethernet vlan 802.1p
Command: create access_profile profile_id 1 ethernet vlan 802.1p
Success.
DGS–3426:5#
```

config access_profile profile_id (for Ethernet)

Purpose
Used to configure the Ethernet access profile on the Switch and to define specific values for the rules that will be used by the Switch to determine if a given packet should be forwarded or filtered. Masks entered using the `create access_profile` command will be combined, using a logical AND operational method, with the values the Switch finds in the specified frame header fields.

Syntax
```plaintext
config access_profile profile_id <value 1–6> [add access_id [auto_assign | <value 1-128> [ethernet {vlan <vlan_name 32> | source_mac <macaddr 000000000000–ffffffffffff> | destination_mac <macaddr 000000000000–ffffffffffff> | 802.1p <value 0-7> | ethernet_type <hex 0x0-0xffff>} (1) | port [<portlist> | all] [permit {priority <value 0-7> {replace_priority} | rx_rate {no_limit | <value 1-156249>} | replace_dscp <value 0-63> | counter [enable | disable]] | mirror | deny] | {time_range <range_name 32>} delete access_id <value 1-128>]
```

Description
This command is used to define the rules used by the Switch to either filter or forward packets based on the Ethernet part of each packet header.

Parameters
- `profile_id <value 1–6>` – Enter an integer between 1 and 6 that is used to identify the access profile that will be configured with this command. This value is assigned to the
config access_profile profile_id (for Ethernet)

access profile when it is created with the create access_profile command. The lower the profile ID, the higher the priority the rule will be given.

add access_id <value 1–128> – Adds an additional rule to the above specified access profile. The value specifies the relative priority of the additional rule. Up to 128 different rules may be configured for the Ethernet access profile.

- **auto_assign** – Choose this parameter to configure the Switch to automatically assign a numerical value (between 1 and 128) for the rule being configured.
- **ethernet** – Specifies that the Switch will look only into the layer 2 part of each packet to determine if it is to be filtered or forwarded based on one or more of the following:
 - **vlan <vlan_name 32>** – Specifies that the access profile will apply to only this previously created VLAN.
 - **source_mac <macaddr>** – Specifies that the access profile will apply to only packets with this source MAC address. MAC address entries may be made in the following format: 000000000000–FF:FF:FF:FF
 - **destination_mac <macaddr>** – Specifies that the access profile will apply to only packets with this destination MAC address. MAC address entries may be made in the following format: 000000000000–FF:FF:FF:FF
 - **802.1p <value 0–7>** – Specifies that the access profile will apply only to packets with this 802.1p priority value.
 - **ethernet_type <hex 0x0–0xffff>** – Specifies that the access profile will apply only to packets with this hexadecimal 802.1Q Ethernet type value in the packet header.
- **port <portlist> | all** – The access profile for Ethernet may be defined for each port on the Switch. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Up to 128 rules may be configured for each port. The user may select all ports by entering the all parameter. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

- **permit** – Specifies that packets that match the access profile are permitted to be forwarded by the Switch.
 - **priority <value 0–7>** – This parameter is specified if you want to re–write the 802.1p default priority previously set in the Switch, which is used to determine the CoS queue to which packets are forwarded to. Once this field is specified, packets accepted by the Switch that match this priority are forwarded to the CoS queue specified previously by the user.
 - `{replace_priority}` – Enter this parameter if you want to re–write the 802.1p default priority of a packet to the value entered in the Priority field, which meets the criteria specified previously in this command, before forwarding it on to the specified CoS queue. Otherwise, a packet will have its incoming 802.1p user priority re–written to its original value before being forwarded by the Switch.
 - **replace_dscp <value 0-63>** - Allows the user to specify a value to be written to the DSCP field of an incoming packet that meets the criteria specified in the first part of the command. This value will over-write the value in the DSCP field of the packet.
- **rx_rate** – Use this to limit Rx bandwidth for the profile being configured. This rate is implemented using the following equation – 1 value = 64kbit/sec. (ex. If the user selects a rx rate of 10 then the ingress rate is 640kbit/sec.) The user many select a value between 1–156249 or no limit. The default setting is no limit.
- **counter [enable | disable]** – Use this parameter to enable the counter function. When enabled, this counter will count the number of packets that match the profile stated with this command. If the counter command is enabled using the flow_meter command, the counter command here will be overridden and therefore will not count packets. This command is optional and the default setting is disabled.

- **mirror** – Select mirror to specify that packets match the access profile are mirrored to a port defined in the config mirror port command. Port Mirroring must be enabled and a
config access_profile profile_id (for Ethernet)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| target port must be set.
| deny – Specifies that packets that match the access profile are not permitted to be forwarded by the Switch and will be filtered.
| \{time_range <range_name 32>\} – Choose this parameter and enter the name of the Time Range settings that has been previously configured using the config time_range command. This will set specific times when this access rule will be enabled or disabled on the Switch.
| delete access_id <value 1–128> – Use this command to delete a specific rule from the Ethernet profile. Up to 128 rules may be specified for the Ethernet access profile.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure a rule for the Ethernet access profile:

```
DGS-3426:5#config access profile profile_id 1 add access_id 1 ethernet vlan Trinity 802.1p 1 port 1:1 permit priority 1 replace priority
Command: config access profile profile_id 1 add access_id 1 ethernet vlan Trinity 802.1p 1 port 1:1 permit priority 1 replace priority
Success.
DGS-3426:5#
```

create access_profile (IP)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Used to create an access profile on the Switch by examining the IP part of the packet header. Masks entered can be combined with the values the Switch finds in the specified frame header fields. Specific values for the rules are entered using the config access_profile command, below.</td>
</tr>
<tr>
<td>Syntax</td>
<td>`create access_profile profile_id <value 1-6> ip {vlan</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create a profile for packets that may be accepted or denied by the Switch by examining the IP part of the packet header. Specific values for rules pertaining to the IP part of the packet header may be defined by configuring the config access_profile command for IP, as stated below.</td>
</tr>
</tbody>
</table>
| Parameters | `ip` – Specifies that the Switch will look into the IP fields in each packet with special emphasis on one or more of the following:
 - `profile_id <value 1–6>` – Specifies an index number between 1 and 6 that will identify the access profile being created with this command.
 - `source_ip_mask <netmask>` – Specifies an IP address mask for the source IP address.
 - `destination_ip_mask <netmask>` – Specifies an IP address mask for the destination IP address.
 - `dscp` – Specifies that the Switch will examine the DiffServ Code Point (DSCP) field in each frame’s header.
 - `icmp` – Specifies that the Switch will examine the Internet Control Message Protocol (ICMP) field in each frame’s header.
 - `type` – Specifies that the Switch will examine each frame’s ICMP Type field.
 - `code` – Specifies that the Switch will examine each frame’s ICMP Code field.
 - `igmp` – Specifies that the Switch will examine each frame’s Internet Group Management Protocol (IGMP) field. |
create access_profile (IP)

Parameters

- **type** – Specifies that the Switch will examine each frame’s IGMP Type field.
- **tcp** – Specifies that the Switch will examine each frame’s Transport Control Protocol (TCP) field.
- **src_port_mask** `<hex 0x0–0xffff>` – Specifies a TCP port mask for the source port.
- **dst_port_mask** `<hex 0x0–0xffff>` – Specifies a TCP port mask for the destination port.
- **flag_mask** `{all | {urg | ack | psh | rst | syn | fin}}` – Enter the appropriate flag_mask parameter. All incoming packets have TCP port numbers contained in them as the forwarding criterion. These numbers have flag bits associated with them which are parts of a packet that determine what to do with the packet. The user may deny packets by denying certain flag bits within the packets. The user may choose between **all**, **urg** (urgent), **ack** (acknowledgement), **psh** (push), **rst** (reset), **syn** (synchronize) and **fin** (finish).
- **udp** – Specifies that the Switch will examine each frame’s Universal Datagram Protocol (UDP) field.
- **src_port_mask** `<hex 0x0–0xffff>` – Specifies a UDP port mask for the source port.
- **dst_port_mask** `<hex 0x0–0xffff>` – Specifies a UDP port mask for the destination port.
- **protocol_id_mask** – Specifies that the Switch will examine each frame’s Protocol ID field.
- `<hex 0x0–0xff>` – Enter a hexadecimal value that will identify the protocol to be discovered in the packet header.
- **user_define** `<hex 0x0–0xffffffff>` – Enter a hexadecimal value that will identify the user defined protocol to be discovered in the packet header.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure a rule for the IP access profile:

```
DGS-3426:5# create access_profile profile_id 2 ip protocol_id_mask 0xFF
Command: create access_profile profile_id 2 ip protocol_id_mask 0xFF
Success.
DGS-3426:5#
```

config access_profile profile_id (IP)

Purpose

Used to configure the IP access profile on the Switch and to define specific values for the rules that will be used to by the Switch to determine if a given packet should be forwarded or filtered. Masks entered using the **create access_profile** command will be combined, using a logical AND operational method, with the values the Switch finds in the specified frame header fields.

Syntax

```
config access_profile profile_id <value 1-6> [add access_id [auto_assign | <value 1-128>] ip [vlan<vlan_name 32> [source_ip <ipaddr> | destination_ip <ipaddr>] | dscp <value 0-63> | icmp {type <value 0-255> | code <value 0-255>}] | igmp {type <value 0-255>}] | tcp {src_port <value 0-65535> | dst_port <value 0-65535> | urg | ack | psh | rst | syn | fin} | udp {src_port <value 0-65535> | dst_port <value 0-65535>} | protocol_id <value 0-255> | protocol_id_mask | user_define | replace_dscp <value 0-63> | counter [enable | disable]] | mirror | deny {time_range <range_name 32>}] | delete access_id <value 1-128>]
```

Description

This command is used to define the rules used by the Switch to either filter or forward packets based on the IP part of each packet header.
config access_profile profile_id (IP)

Parameters

profile_id <value 1–6> – Enter an integer between 1 and 6 that is used to identify the access profile that will be configured with this command. This value is assigned to the access profile when it is created with the create access_profile command. The lower the profile ID, the higher the priority the rule will be given.

add access_id <value 1–128> – Adds an additional rule to the above specified access profile. The value specifies the relative priority of the additional rule. Up to 128 different rules may be configured for the IP access profile.

- auto_assign – Choose this parameter to configure the Switch to automatically assign a numerical value (between 1 and 128) for the rule being configured.

ip – Specifies that the Switch will look into the IP fields in each packet to see if it will be either forwarded or filtered based on one or more of the following:

- source_ip <ipaddr> – Specifies that the access profile will apply to only packets with this source IP address.
- destination_ip <ipaddr> – Specifies that the access profile will apply to only packets with this destination IP address.
- dscp <value 0–63> – Specifies that the access profile will apply only to packets that have this value in their Type–of–Service (DiffServ code point, DSCP) field in their IP packet header.
- icmp – Specifies that the Switch will examine the Internet Control Message Protocol (ICMP) field within each packet.
- igmp – Specifies that the access profile will apply to packets that have this IGMP type.
- tcp – Specifies that the switch will examine each frames Transport Control Protocol (TCP) field.
 - src_port <value 0–65535> – Specifies that the access profile will apply only to packets that have this TCP source port in their TCP header.
 - dst_port <value 0–65535> – Specifies that the access profile will apply only to packets that have this TCP destination port in their TCP header.
- Enter the type of TCP flag to be masked. The choices are:
 - urg: TCP control flag (urgent)
 - ack: TCP control flag (acknowledgement)
 - psh: TCP control flag (push)
 - rst: TCP control flag (reset)
 - syn: TCP control flag (synchronize)
 - fin: TCP control flag (finish)
- udp – Specifies that the Switch will examine the Universal Datagram Protocol (UDP) field in each packet.
 - src_port <value 0–65535> – Specifies that the access profile will apply only to packets that have this UDP source port in their header.
 - dst_port <value 0–65535> – Specifies that the access profile will apply only to packets that have this UDP destination port in their header.
- protocol_id <value 0–255> – Specifies that the Switch will examine the Protocol field in each packet and if this field contains the value entered here, apply the appropriate rules.
 - user_define <hex 0x0–0xffffffff> – Enter a hexadecimal value that will identify the protocol to be discovered in the packet header.

port <portlist> | all – The access profile for IP may be defined for each port on the Switch. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Up to 128 rules may be configured for each port. Selecting all will configure this rule for all ports on the Switch. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
config access_profile profile_id (IP)

permit – Specifies that packets that match the access profile are permitted to be forwarded by the Switch.

- *priority <value 0–7>* – This parameter is specified if you want to re-write the 802.1p default priority previously set in the Switch, which is used to determine the CoS queue to which packets are forwarded to. Once this field is specified, packets accepted by the Switch that match this priority are forwarded to the CoS queue specified previously by the user.

- *{replace_priority}* – Enter this parameter if you want to re-write the 802.1p default priority of a packet to the value entered in the Priority field, which meets the criteria specified previously in this command, before forwarding it on to the specified CoS queue. Otherwise, a packet will have its incoming 802.1p user priority re-written to its original value before being forwarded by the Switch.

replace_dscp <value 0–63> – Allows you to specify a value to be written to the DSCP field of an incoming packet that meets the criteria specified in the first part of the command. This value will over-write the value in the DSCP field of the packet.

rx_rate – Use this to limit Rx bandwidth for the profile being configured. This rate is implemented using the following equation – 1 value = 64kbit/sec. (ex. If the user selects a rx rate of 10 then the ingress rate is 640kbit/sec.) The user many select a value between 1– 156249 or no limit. The default setting is no limit.

counter [enable | disable] – Use this parameter to enable the counter function. When enabled, this counter will count the number of packets that match the profile stated with this command. If the counter command is enabled using the flow_meter command, the counter command here will be overridden and therefore will not count packets. This command is optional and the default setting is disabled.

mirror – Select mirror to specify that packets match the access profile are mirrored to a port defined in the `config mirror port` command. Port Mirroring must be enabled and a target port must be set.

deny – Specifies that packets that match the access profile are not permitted to be forwarded by the Switch and will be filtered.

{time_range <range_name 32>) – Choose this parameter and enter the name of the Time Range settings that has been previously configured using the `config time_range` command. This will set specific times when this access rule will be enabled or disabled on the Switch.

delete access_id <value 1–128> – Use this command to delete a specific rule from the IP profile. Up to 128 rules may be specified for the IP access profile.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure a rule for the IP access profile:

```
DGS-3426:5# config access_profile profile_id 2 add access_id 2 ip protocol_id 2 port 1:2 deny
Command: config access_profile profile_id 2 add access_id 2 ip protocol_id 2 port 1:2 deny
Success.
DGS-3426:5#
```
create access_profile (packet content)

Purpose
Used to create an access profile on the Switch by examining the Ethernet part of the packet header. Packet content masks entered will specify certain bytes of the packet header to be identified by the Switch. When the Switch recognizes a packet with the identical byte as the one configured, it will either forward or filter the packet, based on the user's command. Specific values for the rules are entered using the `config access_profile` command, below.

Syntax
```
create access_profile profile_id <value 1-6> packet_content_mask {offset_chunk_1 <value 0-31> <hex 0x0-0xffffffff> | offset_chunk_2 <value 0-31> <hex 0x0-0xffffffff> | offset_chunk_3 <value 0-31> <hex 0x0-0xffffffff> | offset_chunk_4 <value 0-31> <hex 0x0-0xffffffff>} (1)
```

Description
This command is used to identify packets by examining the Ethernet packet header, by byte and then decide whether to filter or forward it, based on the user’s configuration. The user will specify which bytes to examine by entering them into the command, in hex form, and then selecting whether to filter or forward them, using the `config access_profile` command.

Parameters
- `packet_content_mask` – The offset field is used to examine the packet header which is divided up into four “chunks” where each chunk represents 4 bytes. Values within the packet header chunk to be identified are to be marked in hexadecimal form in the “mask” field. The following table will help you identify the bytes in the respective chunks.

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
<th>chunk4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b126</td>
<td>b2</td>
<td>b6</td>
<td>b114</td>
<td>b118</td>
</tr>
<tr>
<td>b127</td>
<td>b3</td>
<td>b7</td>
<td>b115</td>
<td>b119</td>
</tr>
<tr>
<td>b1</td>
<td>b4</td>
<td>b8</td>
<td>b116</td>
<td>b120</td>
</tr>
<tr>
<td>b0</td>
<td>b5</td>
<td>b9</td>
<td>b117</td>
<td>b121</td>
</tr>
</tbody>
</table>

Check the box of the chunk, from 1 to 4, you wish to examine and then enter the hexadecimal value in the `mask` field.

- `profile_id <value 1-6>` – Specifies an index number between 1 and 6 that will identify the access profile being created with this command.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create an access profile by packet content mask:

```
DGS-3627:5# create access_profile packet_content_mask offset_chunk_1 1 0xFFFFFFFF profile_id 3
Command: create access_profile packet_content_mask offset_chunk_1 1 0xFFFFFFFF profile_id 3
Success.
DGS-3627:5#
```

config access_profile profile_id (packet content)

Purpose
To configure the rule for a previously created access profile command based on the packet content mask. Packet content masks entered will specify certain bytes of the packet header to be identified by the Switch. When the Switch recognizes a packet with the identical byte as the one configured, it will either forward or filter the packet, based on the user’s command entered here.

Syntax
```
config access_profile profile_id <value 1-6> [add access_id <value 1-128> packet_content {offset_chunk_1 <hex 0x0-0xffffffff> | offset_chunk_2 <hex 0x0-0xffffffff> | offset_chunk_3 <hex 0x0-0xffffffff> | offset_chunk_4 <hex 0x0-0xffffffff>} (1) port [<portlist> | all] [permit {priority <value 0-7> {replace_priority} | rx_rate {no_limit | <value 1-156249>} | replace_dscp <value 0-63} | counter [enable | disable]] | mirror | deny] {time_range <range_name 32>} | delete access_id <value 1-128>]
```

config access_profile profile_id (packet content)

Description
This command is used to set the rule for a previously configured access profile setting based on packet content mask. These rules will determine if the Switch will forward or filter the identified packets, based on user configuration specified in this command. Users will set bytes to identify by entering them in hex form, offset from the first byte of the packet.

Parameters

profile_id <value 1-6> – Enter an integer between 1 and 6 that is used to identify the access profile that will be configured with this command. This value is assigned to the access profile when it is created with the create access_profile command. The lower the profile ID, the higher the priority the rule will be given.

add access_id – Adds an additional rule to the above specified access profile.
- auto_assign – Adding this parameter will automatically assign an access_id to identify the rule.
- <value 1-128> – The value specifies the relative priority of the additional rule. Up to 128 different rules may be configured for the Ethernet access profile.

offset_chunk_1 – The offset field is used to examine the packet header which is divided up into 4 “chunks” where each chunk represents 4 bytes. Values within the packet header chunk to be identified are to be marked in hexadecimal form in the “mask” field. The following table will help you identify the bytes in the respective chunks.

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
<th>chunk4</th>
<th>chunk5</th>
</tr>
</thead>
<tbody>
<tr>
<td>b126</td>
<td>b2</td>
<td>b6</td>
<td>b114</td>
<td>b118</td>
<td>b122</td>
</tr>
<tr>
<td>b127</td>
<td>b3</td>
<td>b7</td>
<td>b115</td>
<td>b119</td>
<td>b123</td>
</tr>
<tr>
<td>b1</td>
<td>b4</td>
<td>b8</td>
<td>b116</td>
<td>b120</td>
<td>b124</td>
</tr>
<tr>
<td>b0</td>
<td>b5</td>
<td>b9</td>
<td>b117</td>
<td>b121</td>
<td>b125</td>
</tr>
</tbody>
</table>

Check the box of the chunk, from 1-4, you wish to examine and then enter the hexadecimal value in the mask field.

port <portlist> | all – The access profile for IP may be defined for each port on the Switch. Up to 128 rules may be configured for each port. Selecting all will configure this rule for all ports on the Switch. The beginning and end of the port list range are separated by a dash. Non-contiguous port list entries are separated by a comma. (ex:1-3,7-9)

permit – Specifies that packets that match the access profile are permitted to be forwarded by the Switch.
- priority <value 0-7> – This parameter is specified to re-write the 802.1p default priority previously set in the Switch, which is used to determine the CoS queue to which packets are forwarded to. Once this field is specified, packets accepted by the Switch that match this priority are forwarded to the CoS queue specified previously by the user.
- {replace_priority} – Enter this parameter to re-write the 802.1p default priority of a packet to the value entered in the Priority field, which meets the criteria specified previously in this command, before forwarding it on to the specified CoS queue. Otherwise, a packet will have its incoming 802.1p user priority re-written to its original value before being forwarded by the Switch.

replace_dscp <value 0-63> – Allows the user to specify a value to be written to the DSCP field of an incoming packet that meets the criteria specified in the first part of the command. This value will over-write the value in the DSCP field of the packet.

rx_rate – Use this to limit Rx bandwidth for the profile being configured. This rate is implemented using the following equation – 1 value = 64kbit/sec. (ex. If the user selects a rx rate of 10 then the ingress rate is 640kbit/sec.) The user many select a value between 1-156249 or no limit. The default setting is no limit.

counter [enable | disable] – Use this parameter to enable the counter function. When enabled, this counter will count the number of packets that match the profile stated with this command. If the counter command is enabled using the flow_meter command, the counter command here will be overridden and therefore will not count packets. This command is optional and the default setting is disabled.

mirror – Select mirror to specify that packets match the access profile are mirrored to a port defined in the config mirror port command. Port Mirroring must be enabled and a target port must be set.
config access_profile profile_id (packet content)

| deny – Specifies that packets that match the access profile are not permitted to be forwarded by the Switch and will be filtered. |
| {time_range <range_name 32>} – Choose this parameter and enter the name of the Time Range settings that has been previously configured using the `config time_range` command. This will set specific times when this access rule will be enabled or disabled on the Switch. |
| delete access_id <value 1-128> – Use this command to delete a specific rule from the IP profile. Up to 128 rules may be specified for the IP access profile. |

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure an access profile by packet content mask:

```
DGS-3627:5#config access_profile profile_id 3 add access_id 1 packet_content offset_chunk_1 0x11111111 port 3 permit priority 2 replace_priority rx_rate no_limit counter enable
Command: config access_profile profile_id 3 add access_id 1 packet_content mask offset_chunk_1 0x11111111 port 3 permit priority 2 replace_priority rx_rate no_limit counter enable
Success.
DGS-3627:5#
```

create access_profile (ipv6)

Purpose	Used to create an access profile on the Switch by examining the IPv6 part of the packet header. Masks can be entered that will be combined with the values the Switch finds in the specified frame header fields. Specific values for the rules are entered using the `config access_profile` command, below.			
Syntax	`create access_profile profile_id <value 1–6> ipv6 {[[class	flowlabel	source_ipv6_mask <ipv6mask>	destination_ipv6_mask <ipv6mask>]} (1)]`
Description	This command is used to identify various parts of IPv6 packets that enter the Switch so they can be either forwarded or filtered.			
Parameters	`profile_id <value 1–6>` – Specifies an index number between 1 and 6 that will identify the access profile being created with this command.			
ipv6 – Denotes that IPv6 packets will be examined by the Switch for forwarding or filtering based on the rules configured in the `config access_profile` command for IPv6. IPv6 packets may be identified by the following:				
- `class` – Entering this parameter will instruct the Switch to examine the `class` field of the IPv6 header. This class field is a part of the packet header that is similar to the Type of Service (ToS) or Precedence bits field in IPv4.				
- `flowlabel` – Entering this parameter will instruct the Switch to examine the `flow label` field of the IPv6 header. This flow label field is used by a source to label sequences of packets such as non–default quality of service or real time service packets.				
- `source_ipv6_mask <ipv6mask>` – Specifies an IP address mask for the source IPv6 address.				
- `destination_ipv6_mask <ipv6mask>` – Specifies an IP address mask for the destination IPv6 address.				
Restrictions	Only Administrator and Operator-level users can issue this command.			

Example usage:

To create an access profile based on IPv6 classification:
config access_profile profile_id (ipv6)

Purpose
Used to configure the IPv6 access profile on the Switch and to define specific values for the rules that will be used to by the Switch to determine if a given packet should be forwarded or filtered. Masks entered using the `create access_profile` command will be combined, using a logical AND operational method, with the values the Switch finds in the specified frame header fields.

Syntax
```
config access_profile profile_id <value 1-6> add access_id [auto_assign | <value 1-128>] ipv6 {class <value 0-255> | flowlabel <hex 0x0-0xfffff> | source_ipv6 <ipv6addr> | destination_ipv6 <ipv6addr>} (1) port [<portlist> | all] [permit {priority <value 0-7> {replace_priority} | rx_rate {no_limit | <value 1-156249>}} | counter [enable | disable] | mirror | deny] | {time_range <range_name 32>} delete access_id <value 1-128>
```

Description
This command is used to define the rules used by the Switch to either filter or forward packets based on the IPv6 part of each packet header.

Parameters
- **profile_id <value 1–6>** – Enter an integer between 1 and 6 that is used to identify the access profile that will be configured with this command. This value is assigned to the access profile when it is created with the `create access_profile` command. The lower the profile ID, the higher the priority the rule will be given.
- **add access_id <value 1–128>** – Adds an additional rule to the above specified access profile. The value specifies the relative priority of the additional rule. Up to 128 different rules may be configured for the IPv6 access profile.
 - `auto_assign` – Choose this parameter to configure the Switch to automatically assign a numerical value (between 1 and 128) for the rule being configured.
- **ipv6** – Specifies that the switch will look into the IPv6 fields in each packet, with emphasis on one or more of the following fields:
 - `class <value 0–255>` – Entering this parameter will instruct the Switch to examine the class field of the IPv6 header. This class field is a part of the packet header that is similar to the Type of Service (ToS) or Precedence bits field in IPv4.
 - `flowlabel <hex 0x0–0xfffff>` – Entering this parameter will instruct the Switch to examine the flow label field of the IPv6 header. This flow label field is used by a source to label sequences of packets such as non-default quality of service or real time service packets. This field is to be defined by the user in hex form.
- **source_ipv6 <ipv6addr>** – Specifies an IP address mask for the source IPv6 address.
- **destination_ipv6 <ipv6addr>** – Specifies an IP address mask for the destination IPv6 address.
- **port <portlist> | all** – The access profile for Ethernet may be defined for each port on the Switch. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Up to 128 rules may be configured for each port. Selecting all will configure this rule for all ports on the Switch. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- **permit** – Specifies that packets that match the access profile are permitted to be forwarded by the Switch.
config access_profile profile_id (ipv6)

- **priority <value 0–7>** – This parameter is specified to re-write the 802.1p default priority previously set in the Switch, which is used to determine the CoS queue to which packets are forwarded to. Once this field is specified, packets accepted by the Switch that match this priority are forwarded to the CoS queue specified previously by the user.
- **{replace_priority}** – Enter this parameter to re-write the 802.1p default priority of a packet to the value entered in the Priority field, which meets the criteria specified previously in this command, before forwarding it on to the specified CoS queue. Otherwise, a packet will have its incoming 802.1p user priority re-written to its original value before being forwarded by the Switch.

rx_rate – Use this to limit Rx bandwidth for the profile being configured. This rate is implemented using the following equation – 1 value = 64kbit/sec. (ex. If the user selects a rx rate of 10 then the ingress rate is 640kbit/sec.) The user may select a value between 1–156249 or no_limit. The default setting is no_limit.

deny – Specifies that packets that match the access profile are not permitted to be forwarded by the Switch and will be filtered.

counter [enable | disable] – Use this parameter to enable the counter function. When enabled, this counter will count the number of packets that match the profile stated with this command. If the counter command is enabled using the flow_meter command, the counter command here will be overridden and therefore will not count packets. This command is optional and the default setting is disabled.

mirror - Selecting mirror specifies that packets that match the access profile are mirrored to a port defined in the config mirror port command. Port Mirroring must be enabled and a target port must be set.

{time_range <range_name 32>} – Choose this parameter and enter the name of the Time Range settings that has been previously configured using the config time_range command. This will set specific times when this access rule will be enabled or disabled on the Switch.

delete access_id <value 1–128> – Use this command to delete a specific rule from the IPv6 profile. Up to 128 rules may be specified for the IPv6 access profile.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To configure a previously created access profile based on IPv6 classification:

```
DGS-3426:5#config access_profile profile_id 4 add access_id 1 ipv6 class 1 flowlabel 0xABCD port 1:4 deny
Command: config access_profile profile_id 4 add access_id 1 ipv6 class 1 flowlabel 0xABCD port 1:4 deny
Success.
DGS-3426:5#
```
delete access_profile

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a previously created access profile.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>delete access_profile {profile_id <value 1–6></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a previously created access profile on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>profile_id <value 1–6> – Enter an integer between 1 and 6 that is used to identify the access profile that will be deleted with this command. This value is assigned to the access profile when it is created with the create access_profile command.</td>
</tr>
<tr>
<td>Parameters</td>
<td>all – Using this parameter will delete all IP profiles currently configured on the Switch, except for those automatically created using the IP–MAC binding commands.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete the access profile with a profile ID of 1:

```
DGS-3426:5#delete access_profile profile_id 1
Command: delete access_profile profile_id 1
Success.
DGS-3426:5#
```

show access_profile

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the currently configured access profiles on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show access_profile {profile_id <value 1–6>}</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the currently configured access profiles.</td>
</tr>
<tr>
<td>Parameters</td>
<td>profile_id <value 1–6> – Enter an integer between 1 and 6 that is used to identify the access profile that will be viewed with this command. This value is assigned to the access profile when it is created with the create access_profile command.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Entering this command without the profile_id parameter will command the Switch to display all access profile entries.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display all of the currently configured access profiles on the Switch:
```
DGS-3426:5#show access_profile
Command: show access_profile

Access Profile Table

<table>
<thead>
<tr>
<th>Access Profile ID: 1</th>
<th>TYPE : Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASK Option:</td>
<td>VLAN 802.1p</td>
</tr>
<tr>
<td>Access ID: 3</td>
<td>Mode: Permit(replaced) priority: 1 RX Rate(64Kbps): no_limit</td>
</tr>
<tr>
<td>Ports: 1:1</td>
<td>Trinity 1</td>
</tr>
</tbody>
</table>

Access Profile ID: 2 TYPE : IP

<table>
<thead>
<tr>
<th>MASK Option:</th>
<th>Protocol ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access ID: 2</td>
<td>Mode: Deny</td>
</tr>
<tr>
<td>Ports: 1:2</td>
<td></td>
</tr>
</tbody>
</table>

Access Profile ID: 3 TYPE : Packet Content

<table>
<thead>
<tr>
<th>MASK Option:</th>
<th>Offset 0–15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access ID: 1</td>
<td>Mode: Deny</td>
</tr>
<tr>
<td>Ports: 1:1</td>
<td>Offset 0–15</td>
</tr>
</tbody>
</table>

Total Entries: 3
DGS-3426:5#
```

create cpu access_profile

Purpose

Used to create an access profile specifically for **CPU Interface Filtering** on the Switch and to define which parts of each incoming frame’s header the Switch will examine. Masks can be entered that will be combined with the values the Switch finds in the specified frame header fields. Specific values for the rules are entered using the **config cpu access_profile** command, below.

Syntax

```
create cpu access_profile [ethernet {vlan | source_mac <macaddr 000000000000– ffffffff> | destination_mac <macaddr 000000000000– ffffffff> | ethernet_type} (1) | ip {vlan | source_ip_mask <netmask> | destination_ip_mask <netmask> | dscp | [icmp {type | code} | igmp {type} | tcp {src_port_mask <hex 0x0–0xffff> | dst_port_mask <hex 0x0–0xffff> | flag_mask [all | {urg | ack | psh | rst | syn | fin} (1)] | udp {src_port_mask <hex 0x0–0xffff> | dst_port_mask <hex 0x0–0xffff> | protocol_id_mask {<hex 0x0–0xff> | user_define_mask <hex 0x0–0xffffffff>}]} (1) | packet_content_mask {offset 0–15 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | offset 16–31 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | offset 32–47 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | offset 48–63 <hex 0x0–0xffffffff>}}]
```

```
create cpu access_profile

Description

This command is used to create an access profile used only for CPU Interface Filtering. Masks can be entered that will be combined with the values the Switch finds in the specified frame header fields. Specific values for the rules are entered using the config cpu access_profile command, below.

Parameters

- **ethernet** – Specifies that the Switch will examine the layer 2 part of each packet header.
  - **vlan** – Specifies that the Switch will examine the VLAN part of each packet header.
  - **source_mac <macaddr 000000000000–ffffffffffff>** – Specifies to examine the source MAC address mask. MAC address entries may be made in the following format: `000000000000–FFFFFFFFFFFF`
  - **destination_mac <macaddr 000000000000–ffffffffffff>** – Specifies to examine the destination MAC address mask. MAC address entries may be made in the following format: `000000000000–FFFFFFFFFFFF`
  - **ethernet_type** – Specifies that the switch will examine the Ethernet type value in each frame’s header.

- **ip** – Specifies that the Switch will examine the IP address in each frame’s header.
  - **vlan** – Specifies a VLAN mask.
  - **source_ip_mask <netmask>** – Specifies an IP address mask for the source IP address.
  - **destination_ip_mask <netmask>** – Specifies an IP address mask for the destination IP address.
  - **dscp** – Specifies that the switch will examine the DiffServ Code Point (DSCP) field in each frame’s header.
  - **icmp** – Specifies that the switch will examine the Internet Control Message Protocol (ICMP) field in each frame’s header.
    - **type** – Specifies that the switch will examine each frame’s ICMP Type field.
    - **code** – Specifies that the switch will examine each frame’s ICMP Code field.
  - **igmp** – Specifies that the switch will examine each frame’s Internet Group Management Protocol (IGMP) field.
    - **type** – Specifies that the switch will examine each frame’s IGMP Type field.
  - **tcp** – Specifies that the switch will examine each frame’s Transport Control Protocol (TCP) field.
    - **src_port_mask <hex 0x0–0xffff>** – Specifies a TCP port mask for the source port.
    - **dst_port_mask <hex 0x0–0xffff>** – Specifies a TCP port mask for the destination port.
    - **flag_mask [ all | {urg | ack | psh | rst | syn | fin}]** – Enter the appropriate flag_mask parameter. All incoming packets have TCP port numbers contained in them as the forwarding criterion. These numbers have flag bits associated with them which are parts of a packet that determine what to do with the packet. The user may deny packets by denying certain flag bits within the packets. The user may choose between all, urg (urgent), ack (acknowledgement), psh (push), rst (reset), syn (synchronize) and fin (finish).
  - **udp** – Specifies that the switch will examine each frame’s Universal Datagram Protocol (UDP) field.
    - **src_port_mask <hex 0x0–0xffff>** – Specifies a UDP port mask for the source port.
    - **dst_port_mask <hex 0x0–0xffff>** – Specifies a UDP port mask for the destination port.
  - **protocol_id_mask <hex 0x0–0xffffffff>** – Specifies that the Switch will examine each frame’s Protocol ID field using the hex form entered here.
    - **user_define_mask <hex 0x0–0xff>** – Specifies that the rule applies to the IP protocol ID and the mask options behind the IP header.

- **packet_content_mask** – Specifies that the switch will mask the packet header beginning with the offset value specified as follows:
create cpu access_profile

- **offset_0–15** – Enter a value in hex form to mask the packet from byte 0 to byte 15.
- **offset_16–31** – Enter a value in hex form to mask the packet from byte 16 to byte 31.
- **offset_32–47** – Enter a value in hex form to mask the packet from byte 32 to byte 47.
- **offset_48–63** – Enter a value in hex form to mask the packet from byte 48 to byte 63.
- **offset_64–79** – Enter a value in hex form to mask the packet from byte 64 to byte 79.

**ipv6** – Specifies that the Switch will look into the IPv6 fields in each packet, with emphasis on one or more of the following fields:

- **class <value 0–255>** – Entering this parameter will instruct the Switch to examine the class field of the IPv6 header. This class field is a part of the packet header that is similar to the Type of Service (ToS) or Precedence bits field in IPv4.
- **flowlabel <hex 0x0–0xffff>** – Entering this parameter will instruct the Switch to examine the flow label field of the IPv6 header. This flow label field is used by a source to label sequences of packets such as non-default quality of service or real time service packets. This field is to be defined by the user in hex form.
- **source_ipv6 <ipv6addr>** – Specifies an IP address mask for the source IPv6 address.
- **destination_ipv6 <ipv6addr>** – Specifies an IP address mask for the destination IPv6 address.

**profile_id <value 1–5>** – Enter an integer between 1 and 5 that is used to identify the CPU access profile to be deleted with this command.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To create a CPU access profile:

```
DGS-3426:5# create cpu access_profile profile_id 1 ip vlan source_ip_mask 20.0.0.0 destination_ip_mask 10.0.0.0 dscp icmp type code
```

Command: create cpu access_profile profile_id 1 ip vlan source_ip_mask 20.0.0.0 destination_ip_mask 10.0.0.0 dscp icmp type code

Success.

DGS-3426:5#

delete cpu access_profile

**Purpose**

Used to delete a previously created access profile or cpu access profile.

**Syntax**

```
delete cpu access_profile [profile_id <value 1–5> | all]
```

**Description**

This command is used to delete a previously created CPU access profile.

**Parameters**

- **profile_id <value 1–5>** – Enter an integer between 1 and 5 that is used to identify the CPU access profile to be deleted with this command. This value is assigned to the access profile when it is created with the **create cpu access_profile** command.
- **all** – Entering this parameter will delete all CPU access profiles currently set on the Switch.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

Example usage:

To delete the CPU access profile with a profile ID of 1:

```
DGS-3426:5# delete cpu access_profile profile_id 1
```

Success.

DGS-3426:5#
config cpu access_profile profile_id

**Purpose**
Used to configure a cpu access profile used for CPU Interface Filtering and to define specific values that will be used to forward or filtered. Masks entered using the `create cpu access_profile` command will be combined, using a logical AND operation, with the values the Switch finds in the specified frame header fields. Specific values for the rules are entered using the `config cpu access_profile` command, below.

**Syntax**
```
config cpu access_profile profile_id <value 1–5> [add access_id <value 1–100> [ethernet {vlan <vlan_name 32> | source_mac <macaddr 000000000000–fffffffff> | destination_mac <macaddr 000000000000–fffffffff> | ethernet_type <hex 0x0–0xffff> | ip (vlan <vlan_name 32> | source_ip <ipaddr> | destination_ip <ipaddr> | dscp <value 0–63> | [icmp {type <value 0–255> | code <value 0–255>} | igmp {type <value 0–255>} | tcp {src_port <value 0–65535> | dst_port <value 0–65535> | urg | ack | psh | rst | syn | fin}] | udp {src_port <value 0–65535> | dst_port <value 0–65535> | protocol_id <value 0–255> {user_define <hex 0x0–0xffffffff>}}] (1) | packet_content {offset_0–15 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | offset_16–31 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | offset_32–47 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | offset_48–63 <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> <hex 0x0–0xffffffff> | ipv6 [{class <value 0–255> | flowlabel <hex 0x0–0xffff> } (1) | source_ipv6 <ipv6addr> | destination_ipv6 <ipv6addr>]} (1) | port [sportlist | all] [permit | deny] {time_range <range_name 32>}] | delete access_id <value 1–100>]
```

**Description**
This command is used to configure a CPU access profile for CPU Interface Filtering and to enter specific values that will be combined, using a logical AND operational method, with masks entered with the `create cpu access_profile` command, above.

**Parameters**
- `profile_id <value 1–5>` – Enter an integer used to identify the access profile that will be configured with this command. This value is assigned to the access profile when it is created with the `create access_profile` command. The profile ID sets the relative priority for the profile and specifies an index number that will identify the access profile being created with this command. Priority is set relative to other profiles where the lowest profile ID has the highest priority.
  - `add access_id <value 1–100>` – Adds an additional rule to the above specified access profile. The value is used to index the rule created.
- `ethernet` – Specifies that the Switch will look only into the layer 2 part of each packet.
  - `vlan <vlan_name 32>` – Specifies that the access profile will apply to only to this VLAN.
  - `source_mac <macaddr 000000000000–fffffffff>` – Specifies that the access profile will apply to this source MAC address.
  - `destination_mac <macaddr 000000000000–fffffffff>` – Specifies that the access profile will apply to this destination MAC address.
  - `ethernet_type <hex 0x0–0xffff>` – Specifies that the access profile will apply only to packets with this hexadecimal 802.1Q Ethernet type value in the packet header.
- `ip` – Specifies that the Switch will look into the IP fields in each packet.
  - `vlan <vlan_name 32>` – Specifies that the access profile will apply to only this VLAN.
config cpu access_profile profile_id

- **source_ip** <ipaddr>  – Specifies that the access profile will apply to only packets with this source IP address.
- **destination_ip** <ipaddr>  – Specifies that the access profile will apply to only packets with this destination IP address.
- **dscp** <value 0–63>  – Specifies that the access profile will apply only to packets that have this value in their Type–of–Service (DiffServ code point, DSCP) field in their IP packet header.
- **icmp**  – Specifies that the Switch will examine the Internet Control Message Protocol (ICMP) field within each packet.
  - **type** <value 0–255>  – Specifies that the access profile will apply to this ICMP type value.
  - **code** <value 0–255>  – Specifies that the access profile will apply to this ICMP code.
- **igmp**  – Specifies that the Switch will examine the Internet Group Management Protocol (IGMP) field within each packet.
  - **type** <value 0–255>  – Specifies that the access profile will apply to packets that have this IGMP type value.
- **tcp**  – Specifies that the Switch will examine the Transmission Control Protocol (TCP) field within each packet.
  - **src_port** <value 0–65535>  – Specifies that the access profile will apply only to packets that have this TCP source port in their TCP header.
  - **dst_port** <value 0–65535>  – Specifies that the access profile will apply only to packets that have this TCP destination port in their TCP header.
- **udp**  – Specifies that the Switch will examine the Transmission Control Protocol (TCP) field within each packet.
  - **src_port** <value 0–65535>  – Specifies that the access profile will apply only to packets that have this UDP source port in their header.
  - **dst_port** <value 0–65535>  – Specifies that the access profile will apply only to packets that have this UDP destination port in their header.
- **protocol_id** <value 0–255>  – Specifies that the Switch will examine the protocol field in each packet and if this field contains the value entered here, apply the following rules.
  - **user_define_mask** <hex 0x0–0xffffffff>  – Specifies that the rule applies to the IP protocol ID and the mask options behind the IP header.
- **packet_content_mask**  – Specifies that the Switch will mask the packet header beginning with the offset value specified as follows:
  - **offset_0–15**  – Enter a value in hex form to mask the packet from byte 0 to byte 15.
  - **offset_16–31**  – Enter a value in hex form to mask the packet from byte 16 to byte 31.
  - **offset_32–47**  – Enter a value in hex form to mask the packet from byte 32 to byte 47.
  - **offset_48–63**  – Enter a value in hex form to mask the packet from byte 48 to byte 63.
  - **offset_64–79**  – Enter a value in hex form to mask the packet from byte 64 to byte 79.
- **ipv6**  – Specifies that the switch will examine the IPv6 address in each frame’s header.
  - **class**<value 0-255>  – Choosing this parameter will instruct the Switch to examine the class field of the IPv6 header.
  - **flowlabel** <hex 0x0-0xffffffff>  – Choosing this parameter will instruct the Switch to examine the flow label field of the IPv6 header. This flow label field is used by a source to label sequences of packets such as non–default quality of service or real time service packets.
  - **source_ipv6** <ipv6addr>  – Specifies an IPv6 address mask for the source IPv6 address. 

Parameters
### config cpu access_profile profile_id

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Specifies an IPv6 address mask for the destination IPv6 address.</td>
</tr>
<tr>
<td>destination_ipv6 &lt;ipv6addr&gt;</td>
<td>Specifies an IPv6 address mask for the destination IPv6 address.</td>
</tr>
</tbody>
</table>

**<portlist>| all** – Enter the port or ports to which this access profile applies. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Entering all will denote all profiles on the switch or in the switch stack. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

| permit | deny | Specifies that the packet matching the criteria configured with command will either be permitted entry to the cpu or denied entry to the CPU. |

| {time_range <range_name 32>} | Choose this parameter and enter the name of the Time Range settings that has been previously configured using the config time_range command. This will set specific times when this access rule will be enabled or disabled on the Switch. |

| delete access_id <value 1–100> | Use this to remove a previously created access rule in a profile ID. |

**Restrictions**

Only Administrator and Operator-level users can issue this command.

---

**Example usage:**

To configure CPU access list entry:

```
DGS-3426:5# config cpu access_profile profile_id 5 add access_id 1 ip vlan default source_ip 20.2.2.3 destination_ip 10.1.1.252 dscp 3 icmp type 11 code 32 deny
Command: config cpu access_profile profile_id 10 add access_id 1 ip vlan default source_ip 20.2.2.3 destination_ip 10.1.1.252 dscp 3 icmp type 11 code 32 deny
Success.
DGS-3426:5#
```

---

### show cpu_access_profile

**Purpose**

Used to view the CPU access profile entry currently set in the Switch.

**Syntax**

```
show cpu_access_profile {profile_id <value 1–5>}
```

**Description**

This command is used view the current CPU interface filtering entries set on the Switch.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile_id &lt;value 1–5&gt;</td>
<td>Enter an integer between 1 and 5 that is used to identify the CPU access profile to be deleted with this command. This value is assigned to the access profile when it is created with the create cpu access_profile command</td>
</tr>
</tbody>
</table>

**Restrictions**

None.

---

**Example usage:**

To show the CPU filtering state on the Switch:
DGS-3426:5# show cpu access_profile
Command: show cpu access_profile

CPU Interface Filtering State: Disabled

CPU Interface Access Profile Table

Access Profile ID: 1                TYPE : Ethernet
===========================================================================
MASK Option :
VLAN     802.1p
--------  ------
Access ID: 2                Mode: Permit
-------------------------
default
===========================================================================
Total Entries: 1

DGS-3426:5#
The Time Range commands are used in conjunction with the Access Profile commands listed in the previous chapter to determine a starting point and an ending point, based on days of the week, when an Access Profile configuration will be enabled on the Switch. Once configured here, the time range are to be applied to an access profile rule using the `config access_profile profile_id` command.

**NOTE:** The Time Range commands are based on the time settings of the Switch. Make sure to configure the time for the Switch appropriately for these commands using commands listed in the following chapter, **Time and SNTP Commands**.

The Time Range commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config time_range</code></td>
<td>`&lt;range_name 32&gt; [hours start_time &lt;time hh:mm:ss&gt; end_time &lt;time hh:mm:ss&gt; weekdays &lt;daylist&gt;</td>
</tr>
<tr>
<td><code>show time_range</code></td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

### `config time_range`

**Purpose**
Used to configure a time range in which an access profile rule is to be enabled.

**Syntax**
```
config time_range <range_name 32> [hours start_time <time hh:mm:ss> end_time <time hh:mm:ss> weekdays <daylist> | delete]
```

**Description**
This command is to be used in conjunction with an access profile rule to determine a period of time when an access profile and an associated rule are to be enabled on the Switch. Remember, this time range can only be applied to one period of time and also, it is based on the time set on the Switch.

**Parameters**
- `range_name 32` – Enter a name of no more than 32 alphanumeric characters that will be used to identify this time range on the Switch. This range name will be used in the `config access_profile profile_id` command to identify the access profile and associated rule to be enabled for this time range.
- `hours` – This parameter is used to set the time in the day that this time range is to be set using the following parameters:
  - `start_time <time hh:mm:ss>` – Use this parameter to identify the starting time of the time range, in hours, minutes and seconds, based on the 24–hour time system.
  - `end_time <time hh:mm:ss>` – Use this parameter to identify the ending time of the time range, in hours, minutes and seconds, based on the 24–hour time system.
- `weekdays` – Use this parameter to determine the days of the week to set this time range.
  - `<daylist>` – The user may set the days of the week here to set this time range in the three letter format (mon, tue, wed…). To specify a day range, separate the daylist using a dash (mon–fri would mean Monday through Friday). To specify a list of days in a week, separate the daylist using a comma, with no spaces (mon,tue,fri would mean Monday, Tuesday and Friday).
- `delete` – Use this parameter to delete a previously configured time range from the system.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**
To configure the time range time1 to be between 6:30 a.m. and 9:40 p.m., Monday to Friday:
DGS-3426:5#config time_range time1 hours start_time 6:30:00 end_time 21:40:00 weekdays mon–fri
Command: config time_range time1 hours start_time 6:30:00 end_time 21:40:00 weekdays mon–fri
Success.
DGS-3426:5#

show time_range

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To view the current configurations of the time range set on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show time_range</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the currently configured time range(s) set on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To view the current time range settings.

DGS-3426:5#show time_range
Command: show time_range

Time Range information
----------------------------------------
Range name : time1
Weekdays   : Mon,Tue,Wed,Thu,Fri
Start time : 06:30:00
End time   : 21:40:00
Total entries: 1

DGS-3426:5#
SAFEGUARD ENGINE COMMANDS

Periodically, malicious hosts on the network will attack the Switch by utilizing packet flooding (ARP Storm) or other methods. These attacks may increase the CPU utilization beyond its capability. To alleviate this problem, the Safeguard Engine function was added to the Switch’s software.

The Safeguard Engine can help the overall operability of the Switch by minimizing the workload of the Switch while the attack is ongoing, thus making it capable to forward essential packets over its network in a limited bandwidth. When the Switch either (a) receives too many packets to process or (b) exerts too much memory, it will enter an Exhausted mode. When in this mode, the Switch will perform the following tasks to minimize the CPU usage:

1. It will limit bandwidth of receiving ARP packets. The user may implement this in two ways, by using the \texttt{config safeguard_engine} command.
   a. When \texttt{strict} is chosen, the Switch will stop receiving ARP packets not destined for the Switch. This will eliminate all unnecessary ARP packets while allowing the essential ARP packets to pass through to the Switch’s CPU.
   b. When \texttt{fuzzy} is chosen, the Switch will minimize the ARP packet bandwidth received by the switch by adjusting the bandwidth for all ARP packets, whether destined for the Switch or not. The Switch uses an internal algorithm to filter ARP packets through, with a higher percentage set aside for ARP packets destined for the Switch.

2. It will limit the bandwidth of IP packets received by the Switch. The user may implement this in two ways, by using the \texttt{config safeguard_engine} command.
   a. When \texttt{strict} is chosen, the Switch will stop receiving all unnecessary broadcast IP packets, even if the high CPU utilization is not caused by the high reception rate of broadcast IP packets.
   b. When \texttt{fuzzy} is chosen, the Switch will minimize the IP packet bandwidth received by the Switch by adjusting the bandwidth for all IP packets, by setting a acceptable bandwidth for both unicast and broadcast IP packets. The Switch uses an internal algorithm to filter IP packets through while adjusting the bandwidth dynamically.

IP packets may also be limited by the Switch by configuring only certain IP addresses to be accepted. This method can be accomplished through the CPU Interface Filtering mechanism explained in the previous section. Once the user configures these acceptable IP addresses, other packets containing different IP addresses will be dropped by the Switch, thus limiting the bandwidth of IP packets. To keep the process moving fast, be sure not to add many conditions on which to accept these acceptable IP addresses and their packets, this limiting the CPU utilization.

Once in Exhausted mode, the packet flow will decrease by half of the level that caused the Switch to enter Exhausted mode. After the packet flow has stabilized, the rate will initially increase by 25% and then return to a normal packet flow.

\textbf{NOTICE:} When the Safeguard Engine is enabled, the Switch will allot bandwidth to various traffic flows (ARP, IP) using the FFP (Fast Filter Processor) metering table to control the CPU utilization and limit traffic. This may limit the speed of routing traffic over the network.

The Safeguard Engine commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{config safeguard_engine}</td>
<td>{state [enable</td>
</tr>
<tr>
<td>\texttt{show safeguard_engine}</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
config safeguard_engine

Purpose: To config ARP storm control for system.

Syntax:

```
config safeguard_engine {state [enable | disable] | utilization {rising <value 20–100> | falling <value 20–100>} | trap_log [enable | disable] | mode [strict | fuzzy]}
```

Description: Use this command to configure Safeguard Engine to minimize the effects of an ARP storm.

Parameters:

- **state [enable | disable]** – Select the running state of the Safeguard Engine function as enable or disable.
- **utilization** – Select this option to trigger the Safeguard Engine function to enable based on the following determinates:
  - **rising <value 20–100>** – The user can set a percentage value of the rising CPU utilization which will trigger the Safeguard Engine function. Once the CPU utilization rises to this percentage, the Safeguard Engine mechanism will initiate.
  - **falling <value 20–100>** – The user can set a percentage value of the falling CPU utilization which will trigger the Safeguard Engine function to cease. Once the CPU utilization falls to this percentage, the Safeguard Engine mechanism will shut down.
- **trap_log [enable | disable]** – Choose whether to enable or disable the sending of messages to the device’s SNMP agent and switch log once the Safeguard Engine has been activated by a high CPU utilization rate.
- **mode** – Used to select the type of Safeguard Engine to be activated by the Switch when the CPU utilization reaches a high rate. The user may select:
  - **strict** – If selected, this function will instruct the Switch to minimize the IP and ARP traffic flow to the CPU by dynamically allotting an even bandwidth to all traffic flows.
  - **fuzzy** – If selected, this function will stop accepting all ARP packets not intended for the Switch, and will stop receiving all unnecessary broadcast IP packets, until the storm has subsided.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the safeguard engine for the Switch:

```
DGS-3426:5#config safeguard_engine state enable utilization rising 45
Command: config safeguard_engine state enable utilization rising 45
Success.
DGS-3426:5#
```

show safeguard_engine

Purpose: Used to display current Safeguard Engine settings.

Syntax: `show safeguard_engine`

Description: This will list the current status and type of the Safeguard Engine settings currently configured.

Parameters: None.

Restrictions: None.

Example usage:

To display the safeguard engine status:

```
DGS-3426:5#show safeguard_engine
```

233
DGS-3426:5# show safeguard_engine
Command: show safeguard_engine

Safeguard engine state : Disabled
Safeguard engine current status : normal mode
====================================
CPU utilization information:
Rising : 30%
Falling : 20%
Trap/Log state : Disabled
Mode : Fuzzy

DGS-3426:5#
Traffic Segmentation Commands

Traffic segmentation allows you to further sub-divide VLANs into smaller groups of ports that will help to reduce traffic on the VLAN. The VLAN rules take precedence, and then the traffic segmentation rules are applied.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config traffic_segmentation</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>show traffic_segmentation</td>
<td>{&lt;portlist&gt;}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**config traffic_segmentation**

**Purpose**

Used to configure traffic segmentation on the Switch.

**Syntax**

`config traffic_segmentation [<portlist> | all] forward_list [null | all | <portlist>]`

**Description**

This command is used to configure traffic segmentation on the Switch.

**Parameters**

- `<portlist>` – Specifies a port or range of ports that will be configured for traffic segmentation. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `all` – Specifies all ports on the Switch. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)
- `forward_list` – Specifies a port or range of ports that will receive forwarded frames from the ports specified in the portlist, above.
  - `null` – No ports are specified
  - `all` – Specifies all ports on the Switch.
  - `<portlist>` – Specifies a range of ports for the forwarding list. This list must be on the same switch previously specified for traffic segmentation (i.e. following the `<portlist>` specified above for `config traffic_segmentation`). The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure ports 1 through 10 to be able to forward frames to port 11 through 15:

```
DGS-3426:5#config traffic_segmentation 1:1-1:10 forward_list 1:11-1:15
Command: config traffic_segmentation 1:1-1:10 forward_list 1:11-1:15
Success.
DGS-3426:5#
```
# show traffic_segmentation

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the current traffic segmentation configuration on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show traffic_segmentation &lt;portlist&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current traffic segmentation configuration on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;portlist&gt;</code> – Specifies a port or range of ports for which the current traffic segmentation configuration on the Switch will be displayed. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the current traffic segmentation configuration on the Switch.

```
DGS-3426:5#show traffic_segmentation
Command: show traffic_segmentation

Traffic Segmentation Table

<table>
<thead>
<tr>
<th>Port</th>
<th>Forward Portlist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:2</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:3</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:4</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:5</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:6</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:7</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:8</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:9</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:10</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:11</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:12</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:13</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:14</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:15</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:16</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:17</td>
<td>1:1–1:24</td>
</tr>
<tr>
<td>1:18</td>
<td>1:1–1:24</td>
</tr>
</tbody>
</table>
```
The Simple Network Time Protocol (SNTP) (an adaptation of the Network Time Protocol (NTP)) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config sntp</td>
<td>{primary &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>show sntp</td>
<td></td>
</tr>
<tr>
<td>enable sntp</td>
<td></td>
</tr>
<tr>
<td>disable sntp</td>
<td></td>
</tr>
<tr>
<td>config time</td>
<td>&lt;date ddmthyyyy &gt; &lt;time hh:mm:ss &gt;</td>
</tr>
<tr>
<td>config time_zone</td>
<td>{operator [+</td>
</tr>
<tr>
<td>config dst</td>
<td>[disable</td>
</tr>
<tr>
<td>show time</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**config sntp**

**Purpose**

Used to setup SNTP service.

**Syntax**

`config sntp {primary <ipaddr> | secondary <ipaddr> | poll–interval <int 30–99999>}`

**Description**

This command is used to configure SNTP service from an SNTP server. SNTP must be enabled for this command to function (See `enable sntp`).

**Parameters**

- `primary` – This is the primary server the SNTP information will be taken from.
  - `<ipaddr>` – The IP address of the primary server.
- `secondary` – This is the secondary server the SNTP information will be taken from in the event the primary server is unavailable.
  - `<ipaddr>` – The IP address for the secondary server.
- `poll–interval <int 30–99999>` – This is the interval between requests for updated SNTP information. The polling interval ranges from 30 to 99,999 seconds.

**Restrictions**

Only Administrator and Operator-level users can issue this command. SNTP service must be enabled for this command to function (`enable sntp`).

**Example usage:**

To configure SNTP settings:

```
DGS–3426:5#config sntp primary 10.1.1.1 secondary 10.1.1.2 poll–interval 30
Command: config sntp primary 10.1.1.1 secondary 10.1.1.2 poll–interval 30
Success.
DGS–3426:5#
```
**show sntp**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the SNTP information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show sntp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display SNTP settings information including the source IP address, time and poll interval.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

```
To display SNTP configuration information:
```

```
DGS-3426:5# show sntp
Command: show sntp
Current Time Source : System Clock
SNTP : Disabled
SNTP Primary Server : 10.1.1.1
SNTP Secondary Server : 10.1.1.2
SNTP Poll Interval : 30 sec
DGS-3426:5#
```

**enable sntp**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To enable SNTP server support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable sntp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable SNTP support. SNTP service must be separately configured (see <code>config sntp</code>). Enabling and configuring SNTP support will override any manually configured system time settings.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command. SNTP settings must be configured for SNTP to function (<code>config sntp</code>).</td>
</tr>
</tbody>
</table>

Example usage:

```
To enable the SNTP function:
```

```
DGS-3426:5# enable sntp
Command: enable sntp
Success.
DGS-3426:5#
```

**disable sntp**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To disable SNTP server support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable sntp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable SNTP support. SNTP service must be separately configured (see <code>config sntp</code>).</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To disable SNTP:

```
DGS-3426:5#disable sntp
Command: disable sntp
Success.
DGS-3426:5#
```

**config time**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to manually configure system time and date settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config time &lt;date ddmthyyyy&gt; &lt;time hh:mm:ss&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the system time and date settings. These will be overridden if SNTP is configured and enabled.</td>
</tr>
</tbody>
</table>
| Parameters | - `date` – Express the date using two numerical characters for the day of the month, three alphabetical characters for the name of the month, and four numerical characters for the year. For example: 03aug2003.  
- `time` – Express the system time using the format hh:mm:ss, that is, two numerical characters each for the hour using a 24-hour clock, the minute and second. For example: 19:42:30. |
| Restrictions | Only Administrator and Operator-level users can issue this command. Manually configured system time and date settings are overridden if SNTP support is enabled. |

Example usage:

To manually set system time and date settings:

```
DGS-3426:5#config time 30jun2003 16:30:30
Command: config time 30jun2003 16:30:30
Success.
DGS-3426:5#
```

**config time_zone**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to determine the time zone used in order to adjust the system clock.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config time_zone {operator [+</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to adjust system clock settings according to the time zone. Time zone settings will adjust SNTP information accordingly.</td>
</tr>
</tbody>
</table>
| Parameters | - `operator` – Choose to add (+) or subtract (–) time to adjust for time zone relative to GMT.  
- `hour` – Select the number of hours different from GMT.  
- `min` – Select the number of minutes difference added or subtracted to adjust the time zone. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure time zone settings:
DGS-3426:5# config time_zone operator + hour 2 min 30
Command: config time_zone operator + hour 2 min 30
Success.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable and configure time adjustments to allow for the use of Daylight Savings Time (DST).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config dst [disable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable and configure DST. When enabled this will adjust the system clock to comply with any DST requirement. DST adjustment effects system time for both manually configured time and time set using SNTP service.</td>
</tr>
<tr>
<td>Parameters</td>
<td>disable – Disable the DST seasonal time adjustment for the Switch.</td>
</tr>
<tr>
<td></td>
<td>repeating – Using repeating mode will enable DST seasonal time adjustment. Repeating mode requires that the DST beginning and ending date be specified using a formula. For example, specify to begin DST on Saturday during the second week of April and end DST on Sunday during the last week of October.</td>
</tr>
<tr>
<td></td>
<td>annual – Using annual mode will enable DST seasonal time adjustment. Annual mode requires that the DST beginning and ending date be specified concisely. For example, specify to begin DST on April 3 and end DST on October 14.</td>
</tr>
<tr>
<td></td>
<td>s_week – Configure the week of the month in which DST begins.</td>
</tr>
<tr>
<td></td>
<td>• &lt;start_week 1–4,last&gt; – The number of the week during the month in which DST begins where 1 is the first week, 2 is the second week and so on, last is the last week of the month.</td>
</tr>
<tr>
<td></td>
<td>e_week – Configure the week of the month in which DST ends.</td>
</tr>
<tr>
<td></td>
<td>• &lt;end_week 1–4,last&gt; – The number of the week during the month in which DST ends where 1 is the first week, 2 is the second week and so on, last is the last week of the month.</td>
</tr>
<tr>
<td></td>
<td>s_day – Configure the day of the week in which DST begins.</td>
</tr>
<tr>
<td></td>
<td>• &lt;start_day sun–sat&gt; – The day of the week in which DST begins expressed using a three character abbreviation (sun, mon, tue, wed, thu, fri, sat)</td>
</tr>
<tr>
<td></td>
<td>e_day – Configure the day of the week in which DST ends.</td>
</tr>
<tr>
<td></td>
<td>• &lt;end_day sun–sat&gt; – The day of the week in which DST ends expressed using a three character abbreviation (sun, mon, tue, wed, thu, fri, sat)</td>
</tr>
<tr>
<td></td>
<td>s_mth – Configure the month in which DST begins.</td>
</tr>
<tr>
<td></td>
<td>• &lt;start_mth 1–12&gt; – The month to begin DST expressed as a number.</td>
</tr>
<tr>
<td></td>
<td>e_mth – Configure the month in which DST ends.</td>
</tr>
<tr>
<td></td>
<td>• &lt;end_mth 1–12&gt; – The month to end DST expressed as a number.</td>
</tr>
<tr>
<td></td>
<td>s_time – Configure the time of day to begin DST.</td>
</tr>
<tr>
<td></td>
<td>• &lt;start_time hh:mm&gt; – Time is expressed using a 24–hour clock, in hours and minutes.</td>
</tr>
<tr>
<td></td>
<td>e_time – Configure the time of day to end DST.</td>
</tr>
<tr>
<td></td>
<td>• &lt;end_time hh:mm&gt; – Time is expressed using a 24–hour clock, in hours and minutes.</td>
</tr>
<tr>
<td></td>
<td>s_date – Configure the specific date (day of the month) to begin DST.</td>
</tr>
<tr>
<td></td>
<td>• &lt;start_date 1–31&gt; – The start date is expressed numerically.</td>
</tr>
</tbody>
</table>
### config dst

**Parameters**
- **e_date** – Configure the specific date (day of the month) to begin DST.
  - `<end_date 1–31>` – The end date is expressed numerically.
- **offset [30 | 60 | 90 | 120]** – Indicates number of minutes to add or to subtract during the summertime. The possible offset times are 30, 60, 90, 120. The default value is 60.

**Restrictions**
- Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure daylight savings time on the Switch:

```plaintext
DGS-3426:5#config dst repeating s_week 2 s_day tue s_mth 4 s_time 15:00 e_week 2 e_day wed e_mth 10 e_time 15:30 offset 30
Command: config dst repeating s_week 2 s_day tue s_mth 4 s_time 15:00 e_week 2 e_day wed e_mth 10 e_time 15:30 offset 30
Success.
DGS-3426:5#
```

### show time

**Purpose**
- Used to display the current time settings and status.

**Syntax**
- `show time`

**Description**
- This command is used to display system time and date configuration as well as display current system time.

**Parameters**
- None.

**Restrictions**
- None.

**Example usage:**

To display the time currently set on the Switch’s System clock:

```plaintext
DGS-3426:5#show time
Command: show time

Current Time Source : System Clock
Current Time : 4 May 2006 15:01:32
Time Zone : GMT +02:30
Daylight Saving Time : Repeating
Offset in Minutes : 30
 Repeating From : Apr 2nd Tue 15:00
 To : Oct 2nd Wed 15:30
Annual From : 29 Apr 00:00
 To : 12 Oct 00:00

DGS-3426:5#
```
DHCP RELAY COMMANDS

The DHCP relay commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config dhcp_relay</td>
<td>(hops &lt;value 1–16&gt;</td>
</tr>
<tr>
<td>config dhcp_relay add ipif</td>
<td>&lt;ipif_name 12&gt;</td>
</tr>
<tr>
<td>config dhcp_relay delete ipif</td>
<td>&lt;ipif_name 12&gt;</td>
</tr>
<tr>
<td>config dhcp_relay option_82 state</td>
<td>[enable</td>
</tr>
<tr>
<td>config dhcp_relay option_82 check</td>
<td>[enable</td>
</tr>
<tr>
<td>config dhcp_relay option_82 policy</td>
<td>[replace</td>
</tr>
<tr>
<td>show dhcp_relay</td>
<td>(ipif &lt;ipif_name 12&gt;)</td>
</tr>
<tr>
<td>enable dhcp_relay</td>
<td></td>
</tr>
<tr>
<td>disable dhcp_relay</td>
<td></td>
</tr>
<tr>
<td>config dhcp_relay option_60 state</td>
<td>[enable</td>
</tr>
<tr>
<td>config dhcp_relay option_60 add</td>
<td>string &lt;string 255&gt;</td>
</tr>
<tr>
<td>config dhcp_relay option_60 default</td>
<td>[relay &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>config dhcp_relay option_60 delete</td>
<td>[string &lt;string 255&gt;</td>
</tr>
<tr>
<td>show dhcp_relay option_60</td>
<td>[[string &lt;string 255&gt;</td>
</tr>
<tr>
<td>config dhcp_relay option_61 state</td>
<td>[enable</td>
</tr>
<tr>
<td>config dhcp_relay option_61 default</td>
<td>[relay &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>config dhcp_relay option_61 add</td>
<td>[mac_address &lt;macaddr&gt;</td>
</tr>
<tr>
<td>config dhcp_relay option_61 delete</td>
<td>[mac_address &lt;macaddr&gt;</td>
</tr>
<tr>
<td>show dhcp_relay option_61</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed in detail in the following sections.

**config dhcp_relay**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the DHCP/BOOTP relay feature of the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config dhcp_relay {hops &lt;value 1–16&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the DHCP/BOOTP relay feature.</td>
</tr>
<tr>
<td>Parameters</td>
<td>hops &lt;value 1–16&gt; Specifies the maximum number of relay agent hops that the DHCP packets can cross. time &lt;sec 0–65535&gt; If this time is exceeded, the Switch will relay the DHCP packet.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To config DHCP relay:
DGS–3$00:4# config dhcp_relay hops 2 time 23
Command: config dhcp_relay hops 2 time 23
Success.
DGS–3426:5#

### config dhcp_relay add ipif

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to add an IP destination address to the switch’s DHCP/BOOTP relay table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config dhcp_relay add ipif &lt;ipif_name 12&gt; &lt;ipaddr&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to add an IP address as a destination to forward (relay) DHCP/BOOTP relay packets to.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;ipif_name 12&gt;</code> – The name of the IP interface in which DHCP relay is to be enabled.  &lt;br&gt; <code>&lt;ipaddr&gt;</code> – The DHCP server IP address.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

#### Example usage:

To add an IP destination to the DHCP relay table:

DGS–3426:5# config dhcp_relay add ipif System 10.58.44.6
Command: config dhcp_relay add ipif System 10.58.44.6
Success.
DGS–3426:5#

### config dhcp_relay delete ipif

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete an IP destination addresses from the Switch’s DHCP/BOOTP relay table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config dhcp_relay delete ipif &lt;ipif_name 12&gt; &lt;ipaddr&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an IP destination addresses in the Switch’s DHCP/BOOTP relay table.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;ipif_name 12&gt;</code> – The name of the IP interface that contains the IP address below.  &lt;br&gt; <code>&lt;ipaddr&gt;</code> – The DHCP server IP address.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

#### Example usage:

To delete an IP destination from the DHCP relay table:

DGS–3426:5# config dhcp_relay delete ipif System 10.58.44.6
Command: config dhcp_relay delete ipif System 10.58.44.6
Success.
DGS–3426:5#
### config dhcp_relay option_82 state

**Purpose**
Used to configure the state of DHCP relay agent information option 82 of the switch.

**Syntax**
```
config dhcp_relay option_82 state [enable | disable]
```

**Description**
This command is used to configure the state of DHCP relay agent information option 82 of the switch.

**Parameters**
- **enable** – When this field is toggled to *Enabled* the relay agent will insert and remove DHCP relay information (option 82 field) in messages between DHCP server and client. When the relay agent receives the DHCP request, it adds the option 82 information, and the IP address of the relay agent (if the relay agent is configured), to the packet. Once the option 82 information has been added to the packet it is sent on to the DHCP server. When the DHCP server receives the packet, if the server is capable of option 82, it can implement policies like restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. Then the DHCP server echoes the option 82 field in the DHCP reply. The DHCP server unicasts the reply to the back to the relay agent if the request was relayed to the server by the relay agent. The switch verifies that it originally inserted the option 82 data. Finally, the relay agent removes the option 82 field and forwards the packet to the switch port that connects to the DHCP client that sent the DHCP request.
- **disable** – If the field is toggled to *disable* the relay agent will not insert and remove DHCP relay information (option 82 field) in messages between DHCP servers and clients, and the check and policy settings will have no effect.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure DHCP relay option 82 state:

```
DGS-3426:5#config dhcp_relay option_82 state enable
Command: config dhcp_relay option_82 state enable
Success.
DGS-3426:5#
```

### config dhcp_relay option_82 check

**Purpose**
Used to configure the checking mechanism of DHCP relay agent information option 82 of the switch.

**Syntax**
```
config dhcp_relay option_82 check [enable | disable]
```

**Description**
This command is used to configure the checking mechanism of DHCP/BOOTP relay agent information option 82 of the switch.

**Parameters**
- **enable** – When the field is toggled to *enable*, the relay agent will check the validity of the packet’s option 82 field. If the switch receives a packet that contains the option 82 field from a DHCP client, the switch drops the packet because it is invalid. In packets received from DHCP servers, the relay agent will drop invalid messages.
- **disable** – When the field is toggled to *disable*, the relay agent will not check the validity of the packet’s option 82 field.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure DHCP relay option 82 check:

```
DGS-3426:5#config dhcp_relay option_82 check disable
Command: config dhcp_relay option_82 check disable
Success.
DGS-3426:5#
```
DGS-3426:5# config dhcp_relay option_82 check enable
Command: config dhcp_relay option_82 check enable
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>config dhcp_relay option_82 policy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Syntax</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Restrictions</strong></td>
</tr>
</tbody>
</table>

Example usage:

To configure DHCP relay option 82 policy:

DGS-3426:5# config dhcp_relay option_82 policy replace
Command: config dhcp_relay option_82 policy replace
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>show dhcp_relay</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Syntax</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
</tr>
<tr>
<td><strong>Restrictions</strong></td>
</tr>
</tbody>
</table>

Example usage:

To show the DHCP relay configuration:
DGS-3426:5# show dhcp_relay
Command: show dhcp_relay

DHCP/BOOTP Relay Status : Enabled
DHCP/BOOTP Hops Count Limit : 2
DHCP/BOOTP Relay Time Threshold : 23
DHCP Relay Agent Information Option 82 State : Enabled
DHCP Relay Agent Information Option 82 Check : Enabled
DHCP Relay Agent Information Option 82 Policy : Replace

<table>
<thead>
<tr>
<th>Interface</th>
<th>Server 1</th>
<th>Server 2</th>
<th>Server 3</th>
<th>Server 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>10.58.44.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DGS-3426:5#

**Example usage:**

To show a single IP destination of the DHCP relay configuration:

DGS-3426:5# show dhcp_relay ipif System
Command: show dhcp_relay ipif System

DHCP/BOOTP Relay Status : Enabled
DHCP/BOOTP Hops Count Limit : 2
DHCP/BOOTP Relay Time Threshold : 23
DHCP Relay Agent Information Option 82 State : Enabled
DHCP Relay Agent Information Option 82 Check : Enabled
DHCP Relay Agent Information Option 82 Policy : Replace

<table>
<thead>
<tr>
<th>Interface</th>
<th>Server 1</th>
<th>Server 2</th>
<th>Server 3</th>
<th>Server 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>10.58.44.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DGS-3426:5#

**enable dhcp_relay**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable the DHCP/BOOTP relay function on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>enable dhcp_relay</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable the DHCP/BOOTP relay function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

**Example usage:**

To enable DHCP relay:

DGS-3426:5# enable dhcp_relay
Command: enable dhcp_relay

Success.

DGS-3426:5#
disable dhcp_relay

Purpose: Used to disable the DHCP/BOOTP relay function on the Switch.
Syntax: `disable dhcp_relay`
Description: This command is used to disable the DHCP/BOOTP relay function on the Switch.
Parameters: None.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To disable DHCP relay:
```
DGS-3426:5#disable dhcp_relay
Command: disable dhcp_relay
Success.
DGS-3426:5#
```

config dhcp_relay option_60 state

Purpose: This command is used to configure the state of DHCP relay agent information option 82 of the switch. Used to configure the DHCP relay option 60 state.
Syntax: `config dhcp_relay option_60 state [enable | disable]`
Description: This command is used to decide whether the DHCP relay will process the DHCP option 60 or not. When option_60 is enabled, if the packet does not have option 60, then the relay servers cannot be determined based on option 60. The relay servers will be determined based on either option 61 or per IPIF configured servers. If the relay servers are determined based on option 60 or option 61, then per IPIF configured servers will be ignored. If the relay servers are not determined either by option 60 or option 61, then per IPIF configured servers will be used to determine the relay servers.
Parameters:
- `enable` – Enables the function.
- `disable` – Disables the function.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To configure DHCP relay option 60 state:
```
DGS-3426:5#config dhcp_relay option_60 state enable
Command: config dhcp_relay option_60 state enable
Success.
DGS-3426:5#
```
### config dhcp_relay option_60 add

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to add an entry for DHCP relay option 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config dhcp_relay option_60 add string &lt;multiword 255&gt; relay &lt;ipaddr&gt; [exact-match</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the option 60 relay rules. Note that different strings can be specified with the same relay server, and the same string can be specified with multiple relay servers. The system will relay the packet to all the matching servers.</td>
</tr>
</tbody>
</table>
| Parameters | `exact-match` – The option 60 string in the packet must fully match the specified string.  
`partial-match` – The option 60 string in the packet only need partial match with the specified string.  
`string` – The specified string.  
`ipaddress` – Specify a relay server IP address. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure a new dhcp relay with option 60:

```bash
DGS-3426:5#config dhcp_relay option_60 add string "abc" relay 10.90.90.1 exact-match
Command: config dhcp_relay option_60 add string "abc" relay 10.90.90.1 exact-match
Success.
DGS-3426:5#
```

### config dhcp_relay option_60 default

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to configure DHCP relay option 60 default relay servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config dhcp_relay option_60 default [relay &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>When there are no matching servers found for the packet, based on option 60, the relay servers will be determined by the default relay server settings. When drop is specified, the packet with no matching rules found will be dropped without further process. If the setting states no- drop, then the packet will be processed further based on option 61. The final relay servers will be the union of option 60 default relay servers and the relay servers determined by option 61.</td>
</tr>
</tbody>
</table>
| Parameters | `ipaddress` – The specified ipaadress for dhcp_relay forward. Specifies a relay server IP for the packet that has matching option 60 rules.  
`drop` – Specify to drop the packet that has no matching option 60 rules.  
`relay` – The packet will be relayed based on the relay rules. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure the DHCP relay default option 60:

```bash
DGS-3426:5#config dhcp_relay option_60 default mode drop
Command: config dhcp_relay option_60 default mode drop
Success.
DGS-3426:5#
```
**config dhcp_relay option_60 delete**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to delete dhcp_relay option_60 entry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config dhcp_relay option_60 delete [string &lt;multiword 255&gt; {relay &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete the entry specified by a user. When all is specified, all rules excluding the default rules are deleted</td>
</tr>
<tr>
<td>Parameters</td>
<td>ipaddress – Deletes any entry whose ipaddress is equal to the specified ipaddress. default – Deletes any default relay ipaddress if ipaddress is not specified. drop – Specify to drop the packet that has no matching option 60 rules. relay – Deletes the entry, whose string and IP address are equal to the string and IP address specified by the user. all – Deletes all entries, however default relay servers are excluded. string – Deletes all the entries whose string is equal to the string specified if the ipaddress is not specified</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete the DHCP relay option 60:

```
DGS-3426:5#config dhcp_relay option_60 delete all
Command: config dhcp_relay option_60 delete all
Success.
DGS-3426:5#
```

**show dhcp_relay option_60**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to display DHCP relay option 60 entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show dhcp_relay option_60 {[string &lt;multiword 255&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the DHCP relay option 60 entry by the user specified.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ipaddress – Shows the entry whose ipaddress is equal to the specified ipaddress. default – Shows the default behaviour of dhcp_relay option60. string – Shows the entry whose string is equal to the string of a specified user.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the DHCP relay option 60:

```
DGS-3426:5#show dhcp_relay option_60
```

249
DGS–3426:5#show dhcp_relay option_60
Command: show dhcp_relay option_60

Default Processing Mode: Drop

Default Servers:

Matching Rules:

<table>
<thead>
<tr>
<th>String</th>
<th>Match Type</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Exact Match</td>
<td>10.90.90.1</td>
</tr>
</tbody>
</table>

Total Entries : 1

DGS–3426:5#

cfg DHCP Relay Option 61 State

Purpose: This command is used to configure the DHCP relay option 61 state.

Syntax: `config dhcp_relay option_61 state [enable|disable]`

Description: This command is used to decide whether the DHCP relay will process the DHCP option 61 or not. When option 61 is enabled, if the packet does not have option 61, then the relay servers cannot be determined based on option 61. If the relay servers are determined based on option 60 or option 61, then per IPIF configured servers will be ignored. If the relay servers are not determined either by option 60 or option 61, then per IPIF configured servers will be used to determine the relay servers.

Parameters:
- `enable`: Enables the function dhcp_relay use option_61 ruler to relay dhcp packet.
- `disable`: Disables the function dhcp_relay use option_61 ruler to relay dhcp packet.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the state of DHCP relay option 61:

DGS–3426:5#config dhcp_relay option_61 state enable
Command: config dhcp_relay option_61 state enable

Success.

DGS–3426:5#
**config dhcp_relay option_61 add**

**Purpose**
This command is used to add a rule for DHCP relay option 61.

**Syntax**
```
config dhcp_relay option_61 add [mac_address <macaddr> |string <desc 255>] [relay <ipaddr>| drop]
```

**Description**
This command is used to add a rule to determine the relay server based on option 61. The matched rule can be based on either the MAC address or a user-specified string. Only one relay server can be specified for a MAC-address or a string. If the relay servers are determined based on option 60, and one relay server is determined based on option 61, the final relay servers will be the union of these two sets of the servers.

**Parameters**
- **mac_address** – The client's client-ID which is the hardware address of client.
- **string** – The client's client-ID, which is specified by administrator.
- **relay** – Specify to relay the packet to a IP address.
- **drop** – Specify to drop the packet.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**
To configure the DHCP relay option 61:

```
DGS-3426:5#config dhcp_relay option_61 add mac_address 00-01-22-33-44-55 drop
Command: config dhcp_relay option_61 add mac_address 00-01-22-33-44-55 drop
Success.
DGS-3426:5#
```

**config dhcp_relay option_61 default**

**Purpose**
This command is used to determine the default rule for option 61.

**Syntax**
```
config dhcp_relay option_61 default [relay <ipaddr> | drop]
```

**Description**
This command is used to determine the rule to process those packets that have no option 61 matching rules. The default default-rule is drop.

**Parameters**
- **relay** – Specifies to relay the packet that has no option 61 matching rules to an IP address.
- **drop** – Specifies to drop the packet that has no option 61 matching rules.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**
To configure the DHCP relay option 61 default:

```
DGS-3426:5#config dhcp_relay option_61 default drop
Command: config dhcp_relay option_61 default drop
Success.
DGS-3426:5#
```
### config dhcp_relay option_61 delete

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to delete an option 61 rule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config dhcp_relay option_61 delete [mac_address &lt;macaddr&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an option 61 rule.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>mac_address</code> – The entry with the specified MAC address will be deleted.</td>
</tr>
<tr>
<td></td>
<td><code>string</code> – The entry with the specified string will be deleted.</td>
</tr>
<tr>
<td></td>
<td><code>all</code> – All rules excluding the default rule will be deleted.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

**Example usage:**

To delete the DHCP relay option 61 rules:

```
DGS-3426:5# config dhcp_relay option_61 delete mac_address 00-11-22-33-44-55
Command: config dhcp_relay option_61 delete mac_address 00-11-22-33-44-55
Success
DGS-3426:5#
```

### show dhcp_relay option_61

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command displays DHCP relay option 61.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show dhcp_relay option_61</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display DHCP relay option 61.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

**Example usage:**

To display the DHCP relay option 61:

```
DGS-3426:5# show dhcp_relay option_61
Command: show dhcp_relay option_61

Default Relay Rule: Drop

Matching Rules:

<table>
<thead>
<tr>
<th>Client-ID</th>
<th>Type</th>
<th>Relay Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-01-22-33-44-55</td>
<td>MAC Address</td>
<td>Drop</td>
</tr>
</tbody>
</table>

Total Entries : 1

DGS-3426:5#
```
The Switch supports only static routing for IPv4 and IPv6 formatted addressing. Users can create up to 128 static route entries for IPv4 and IPv6 combined. Manually configured static and the local route can route IP packets. For each device that is a part of the DGS-3400 network, users may only configure one IP address as a primary or backup route.

For IPv4 static routes, once a static route has been set, the Switch will send an ARP request packet to the next hop router that has been set by the user. Once an ARP response has been retrieved by the switch from that next hop, the route becomes enabled. If a response is not received from the next hop device after three ARP requests have been sent, the configured static route will remain in a link–down status.

The Switch also supports a floating static route, which means that the user may create an alternative static route to a different next hop device located in the same network. This secondary next hop device route is considered as a backup static route for when the primary static route is down. If the primary route is lost, the backup route will uplink and its status will become Active.

The routing table commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create iproute</td>
<td>[default</td>
</tr>
<tr>
<td>delete iproute</td>
<td>[default</td>
</tr>
<tr>
<td>show iproute</td>
<td>[[&lt;network_address&gt;</td>
</tr>
<tr>
<td>create ipv6route</td>
<td>[default</td>
</tr>
<tr>
<td>delete ipv6route</td>
<td>[[default</td>
</tr>
<tr>
<td>show ipv6route</td>
<td>{&lt;ipv6networkaddr&gt;]</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**create iproute**

**Purpose**

Used to create IP route entries to the Switch’s IP routing table.

**Syntax**

create iproute [default | <network_address>] <ipaddr> {<metric 1-65535>} {[primary|backup]}

**Description**

This command is used to create a primary and backup IP route entry to the Switch’s IP routing table.

**Parameters**

- **default** – Specifies to create an IP route entry.
- **<network_address>** – IP address and netmask of the IP interface that is the destination of the route. The address and mask information can be specified using the traditional format (for example, 10.1.2.3/255.0.0.0 or in CIDR format, 10.1.2.3/8).
- **<ipaddr>** – The gateway IP address for the next hop router.
- **<metric 1–65535>** – Allows the entry of a routing protocol metric entry, representing the number of routers between the Switch and the IP address above. The default setting is 1.
- **[primary | backup]** – The user may choose between Primary and Backup. If the Primary Static Route fails, the Backup Route will support the entry. Please take note that the Primary and Backup entries cannot have the same Gateway.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

Example usage:

To add a single static address 10.48.74.121, mask 255.0.0.0 and gateway 10.1.1.254 to the routing table:
### DGS-3426:5# create iproute 10.48.74.121/8 10.1.1.255 primary

Command: create iproute 10.48.74.121/8 10.1.1.255 primary

Success.

### delete iproute

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete an IP route entry from the Switch’s IP routing table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>delete iproute [default</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an existing entry from the Switch’s IP routing table.</td>
</tr>
<tr>
<td>Parameters</td>
<td>default – Specifies to delete a default IP route entry.</td>
</tr>
<tr>
<td></td>
<td>network_address – IP address and netmask of the IP interface that is the destination of the route. The address and mask information can be specified using the traditional format (for example, 10.1.2.3/255.0.0.0 or in CIDR format, 10.1.2.3/8).</td>
</tr>
<tr>
<td></td>
<td>ipaddr – The gateway IP address for the next hop router.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete a backup static address 10.48.75.121, mask 255.0.0.0 and gateway (ipaddr) entry of 10.1.1.254 from the routing table:

DGS-3426:5# delete iproute 10.48.74.121/8 10.1.1.254

Command: delete iproute 10.48.74.121/8 10.1.1.254

Success.

DGS-3426:5#

### show iproute

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the Switch’s current IP routing table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show iproute {{network_address}</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s current IP routing table.</td>
</tr>
<tr>
<td>Parameters</td>
<td>network_address – IP address and netmask of the IP interface that is the destination of the route. The address and mask information can be specified using the traditional format (for example, 10.1.2.3/255.0.0.0 or in CIDR format, 10.1.2.3/8).</td>
</tr>
<tr>
<td></td>
<td>ipaddr – Specifies the IP address of the destination of the route.</td>
</tr>
<tr>
<td></td>
<td>static – Add this parameter to display all statically configured IP routes set on the switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the contents of the IP routing table:

DGS-3426:5# show iproute
DGS-3426P:5# show iproute static

Routing Table

<table>
<thead>
<tr>
<th>IP Address/Netmask</th>
<th>Gateway</th>
<th>Cost</th>
<th>Protocol</th>
<th>Backup</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/8</td>
<td>10.1.1.255</td>
<td>1</td>
<td>Static</td>
<td>Primary</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

Total Entries : 1

DGS-3426P:5#

**create ipv6route**

- **Purpose**: Used to create IPv6 route entries to the Switch’s IP routing table.
- **Syntax**: `create ipv6route [default |<ipv6networkaddr>] [<ipif_name 12> <ipv6addr>] [<ipv6addr>] {<metric 1-65535>}`
- **Description**: This command is used to create an IP route entry to the Switch’s IP routing table.
- **Parameters**:
  - `default`: Use this parameter to create a default static IPv6 route entry in the Switch’s IP routing table.
  - `<ipv6networkaddr>`: IPv6 address and netmask of the IP interface that is the destination of the route. Specify the address and mask information using the format as ipv6address / prefix_length (ipv6address is hexadecimal number, prefix length is decimal number, for example 1234::5D7F/32).
  - `<ipif name 12>`: Enter the corresponding IPIF name of the IPv6 address.
  - `<ipv6addr>`: IPv6 address for the next hop router.
  - `<metric 1–65535>`: Allows the entry of a routing protocol metric entry, representing the number of routers between the Switch and the IP address above. The default setting is 1.
- **Restrictions**: Only Administrator and Operator-level users can issue this command.

**Example usage:**

To add a single static IPv6 entry in IPv6 format:

```
DGS-3426:5# create ipv6route 1234::5D7F/32 2D30::AC21
Command: create ipv6route 1234::5D7F/32 2D30::AC21
Success.
DGS-3426:5#
```
### delete ipv6route

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete an static IPv6 route entry from the Switch's IP routing table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete ipv6route [default</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an existing static IPv6 entry from the Switch’s IP routing table.</td>
</tr>
<tr>
<td>Parameters</td>
<td>default – Use this parameter to delete an existing static IPv6 entry in the Switch’s IP routing table.</td>
</tr>
<tr>
<td></td>
<td><code>&lt;ipv6networkaddr&gt;</code> – IPv6 address and netmask of the IP interface that is the destination of the route. Specify the address and mask information using the format as ipv6address / prefix_length (ipv6address is hexadecimal number, prefix length is decimal number, for example 1234::5D7F/32).</td>
</tr>
<tr>
<td></td>
<td><code>&lt;ipif name 12&gt;</code> – Enter the corresponding IP interface name of the IPv6 address to be deleted here.</td>
</tr>
<tr>
<td></td>
<td><code>&lt;ipv6addr&gt;</code> – IPv6 address for the next hop router.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

#### Example usage:

To delete a static IPv6 entry from the routing table:

```
DGS-3426:5# delete ipv6route 1234::5D7F/32 2D30::AC21
Command: delete ipv6route 1234::5D7F/32 2D30::AC21
Success.
DGS-3426:5#
```

### show ipv6route

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the Switch’s current static IPv6 routing table or a specified IPv6 address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show ipv6route &lt;ipv6networkaddr&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s current static IPv6 routing table or a specific IPv6 entry.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;ipv6networkaddr&gt;</code> – IPv6 address and netmask of the IP interface that is the destination of the route. Specify the address and mask information using the format as ipv6address / prefix_length (ipv6address is hexadecimal number, prefix length is decimal number, for example 1234::5D7F/32).</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

#### Example usage:

To display the static IPv6 entries in the routing table:

```
DGS-3426:5# show ipv6route 1234::5D7F/32 2D30::AC21
```


DGS-3426:5# show ipv6route
Command: show ipv6route

Routing Table
IPv6 Prefix: 1234::/32 Protocol: Static Metric: 1
Next Hop : 2D30::AC21 IPIF :
Status : Inactive
Total Entries: 1

DGS-3426:5#
The MAC notification commands in the Command Line Interface (CLI) are listed, in the following table, along with their appropriate parameters.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable mac_notification</td>
<td></td>
</tr>
<tr>
<td>disable mac_notification</td>
<td></td>
</tr>
<tr>
<td>config mac_notification</td>
<td>(interval &lt;int 1–2147483647&gt;</td>
</tr>
<tr>
<td>config mac_notification ports</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>show mac_notification</td>
<td></td>
</tr>
<tr>
<td>show mac_notification ports</td>
<td>&lt;portlist&gt;</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**enable mac_notification**

**Purpose**
Used to enable global MAC address table notification on the Switch.

**Syntax**
`enable mac_notification`

**Description**
This command is used to enable MAC address notification without changing configuration.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example Usage:**

To enable MAC notification without changing basic configuration:

```
DGS-3426:5#enable mac_notification
Command: enable mac_notification
Success.
DGS-3426:5#
```

**disable mac_notification**

**Purpose**
Used to disable global MAC address table notification on the Switch.

**Syntax**
`disable mac_notification`

**Description**
This command is used to disable MAC address notification without changing configuration.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example Usage:**

To disable MAC notification without changing basic configuration:

```
DGS-3426:5#disable mac_notification
Command: disable mac_notification
Success.
DGS-3426:5#
```
DGS-3426:5#disable mac_notification
Command: disable mac_notification

Success.

DGS-3426:5#

<table>
<thead>
<tr>
<th><strong>config mac_notification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Syntax</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
</tbody>
</table>
| **Parameters** | `interval <sec 1–2147483647>` – The time in seconds between notifications. The user may choose an interval between 1 and 2,147,483,647 seconds.  
`historysize <1–500>` – The maximum number of entries listed in the history log used for notification. |
| **Restrictions** | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure the Switch’s MAC address table notification global settings:

DGS-3426:5#config mac_notification interval 1 historysize 500
Command: config mac_notification interval 1 historysize 500

Success.

DGS-3426:5#

<table>
<thead>
<tr>
<th><strong>config mac_notification ports</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Syntax</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
</tbody>
</table>
| **Parameters** | `<portlist>` – Specify a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)  
`all` – Entering this command will set all ports on the system.  
[enable | disable] – These commands will enable or disable MAC address table notification on the Switch. |
| **Restrictions** | Only Administrator and Operator-level users can issue this command. |

Example usage:

To enable port 7 for MAC address table notification:
**show mac_notification**

**Purpose**
Used to display the Switch’s MAC address table notification global settings

**Syntax**
`show mac_notification`

**Description**
This command is used to display the Switch’s MAC address table notification global settings.

**Parameters**
None.

**Restrictions**
None.

**Example usage:**

To view the Switch’s MAC address table notification global settings:

```
DGS-3426:5#show mac_notification
Command: show mac_notification

Global MAC Notification Settings
State : Enabled
Interval : 1
History Size : 1

DGS-3426:5#
```

**show mac_notification ports**

**Purpose**
Used to display the Switch’s MAC address table notification status settings

**Syntax**
`show mac_notification ports <portlist>`

**Description**
This command is used to display the Switch’s MAC address table notification status settings.

**Parameters**

- `<portlist>` – Specify a port or range of ports to be configured. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non-contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)

Entering this command without the parameter will display the MAC notification table for all ports.

**Restrictions**
None.

**Example usage:**

To display all port’s MAC address table notification status settings:
DGS-3426:5#show mac_notification ports
Command: show mac_notification ports

<table>
<thead>
<tr>
<th>Port #</th>
<th>MAC Address Table Notification State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:2</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:3</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:4</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:5</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:6</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:7</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:8</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:9</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:10</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:11</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:12</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:13</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:14</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:15</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:16</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:17</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:18</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:19</td>
<td>Disabled</td>
</tr>
<tr>
<td>1:20</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

CTRL+C ESC 7 Quit SPACE n Next Page p Previous Page r Refresh
ACCESS AUTHENTICATION CONTROL COMMANDS

The TACACS / XTACACS / TACACS+ / RADIUS commands allows users secure access to the Switch using the TACACS / XTACACS / TACACS+ / RADIUS protocols. When a user logs in to the Switch or tries to access the administrator level privilege, he or she is prompted for a password. If TACACS / XTACACS / TACACS+ / RADIUS authentication is enabled on the Switch, it will contact a TACACS / XTACACS / TACACS+ / RADIUS server to verify the user. If the user is verified, he or she is granted access to the Switch.

There are currently three versions of the TACACS security protocol, each a separate entity. The Switch’s software supports the following versions of TACACS:

- **TACACS (Terminal Access Controller Access Control System)** – Provides password checking and authentication, and notification of user actions for security purposes utilizing via one or more centralized TACACS servers, utilizing the UDP protocol for packet transmission.

- **Extended TACACS (XTACACS)** – An extension of the TACACS protocol with the ability to provide more types of authentication requests and more types of response codes than TACACS. This protocol also uses UDP to transmit packets.

- **TACACS+ (Terminal Access Controller Access Control System plus)** – Provides detailed access control for authentication for network devices. TACACS+ is facilitated through Authentication commands via one or more centralized servers. The TACACS+ protocol encrypts all traffic between the Switch and the TACACS+ daemon, using the TCP protocol to ensure reliable delivery.

The Switch also supports the RADIUS protocol for authentication using the Access Authentication Control commands. RADIUS or Remote Authentication Dial In User Server also uses a remote server for authentication and can be responsible for receiving user connection requests, authenticating the user and returning all configuration information necessary for the client to deliver service through the user. RADIUS may be facilitated on this Switch using the commands listed in this section.

In order for the TACACS / XTACACS / TACACS+ / RADIUS security function to work properly, a TACACS / XTACACS / TACACS+ / RADIUS server must be configured on a device other than the Switch, called a server host and it must include usernames and passwords for authentication. When the user is prompted by the Switch to enter usernames and passwords for authentication, the Switch contacts the TACACS / XTACACS / TACACS+ / RADIUS server to verify, and the server will respond with one of three messages:

- A) The server verifies the username and password, and the user is granted normal user privileges on the Switch.
- B) The server will not accept the username and password and the user is denied access to the Switch.
- C) The server doesn’t respond to the verification query. At this point, the Switch receives the timeout from the server and then moves to the next method of verification configured in the method list.

The Switch has four built–in server groups, one for each of the TACACS, XTACACS, TACACS+ and RADIUS protocols. These built–in server groups are used to authenticate users trying to access the Switch. The users will set server hosts in a preferable order in the built–in server group and when a user tries to gain access to the Switch, the Switch will ask the first server host for authentication. If no authentication is made, the second server host in the list will be queried, and so on. The built–in server group can only have hosts that are running the specified protocol. For example, the TACACS server group can only have TACACS server hosts.

The administrator for the Switch may set up five different authentication techniques per user–defined method list (TACACS / XTACACS / TACACS+ / RADIUS / local / none) for authentication. These techniques will be listed in an order preferable, and defined by the user for normal user authentication on the Switch, and may contain up to eight authentication techniques. When a user attempts to access the Switch, the Switch will select the first technique listed for authentication. If the first technique goes through its server hosts and no authentication is returned, the Switch will then go to the next technique listed in the server group for authentication, until the authentication has been verified or denied, or the list is exhausted.

Please note that user granted access to the Switch will be granted normal user privileges on the Switch. To gain access to admin level privileges, the user must enter the enable admin command and then enter a password, which was previously configured by the administrator of the Switch.

**NOTE:** TACACS, XTACACS and TACACS+ are separate entities and are not compatible. The Switch and the server must be configured exactly the same, using the same protocol. (For example, if the Switch is set up for TACACS authentication, so must be the host server.)

The Access Authentication Control commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.
<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable authen_policy</td>
<td></td>
</tr>
<tr>
<td>disable authen_policy</td>
<td></td>
</tr>
<tr>
<td>show authen_policy</td>
<td></td>
</tr>
<tr>
<td>create authen_login method_list_name</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>config authen_login</td>
<td>`[default</td>
</tr>
<tr>
<td>delete authen_login method_list_name</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>show authen_login</td>
<td>`{default</td>
</tr>
<tr>
<td>create authen_enable method_list_name</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>config authen_enable</td>
<td>`[default</td>
</tr>
<tr>
<td>delete authen_enable method_list_name</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>show authen_enable</td>
<td>`[default</td>
</tr>
<tr>
<td>config authen_application</td>
<td>`{console</td>
</tr>
<tr>
<td>show authen_application</td>
<td></td>
</tr>
<tr>
<td>create authen_server_group</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>config authen_server_group</td>
<td>`[tacacs</td>
</tr>
<tr>
<td>delete authen_server_group</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>show authen_server_group</td>
<td><code>&lt;string 15&gt;</code></td>
</tr>
<tr>
<td>create authen_server_host</td>
<td>`&lt;ipaddr&gt; protocol {tacacs</td>
</tr>
<tr>
<td>config authen_server_host</td>
<td>`&lt;ipaddr&gt; protocol {tacacs</td>
</tr>
<tr>
<td>delete authen_server_host</td>
<td>`&lt;ipaddr&gt; protocol {tacacs</td>
</tr>
<tr>
<td>show authen_server_host</td>
<td>`&lt;ipaddr&gt; protocol {tacacs</td>
</tr>
<tr>
<td>config authen parameter response_timeout</td>
<td><code>&lt;int 0–255&gt;</code></td>
</tr>
<tr>
<td>config authen parameter attempt</td>
<td><code>&lt;int 1–255&gt;</code></td>
</tr>
<tr>
<td>show authen parameter</td>
<td></td>
</tr>
<tr>
<td>enable admin</td>
<td></td>
</tr>
<tr>
<td>config admin local_enable</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
enable authen_policy

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable system access authentication policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>enable authen_policy</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable an administrator–defined authentication policy for users trying to access the Switch. When enabled, the device will check the method list and choose a technique for user authentication upon login.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the system access authentication policy:

DGS-3426:5#enable authen_policy
Command: enable authen_policy
Success.
DGS-3426:5#

disable authen_policy

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable system access authentication policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable authen_policy</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the administrator–defined authentication policy for users trying to access the Switch. When disabled, the Switch will access the local user account database for username and password verification. In addition, the Switch will now accept the local enable password as the authentication for normal users attempting to access administrator level privileges.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the system access authentication policy:

DGS-3426:5#disable authen_policy
Command: disable authen_policy
Success.
DGS-3426:5#

show authen_policy

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the system access authentication policy status on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show authen_policy</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current status of the access authentication policy on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To display the system access authentication policy:
create authen_login method_list_name

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create a user defined method list of authentication methods for users logging on to the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>create authen_login method_list_name &lt;string 15&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create a list for authentication techniques for user login. The Switch can support up to eight method lists, but one is reserved as a default and cannot be deleted. Multiple method lists must be created and configured separately.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;string 15&gt; – Enter an alphanumeric string of up to 15 characters to define the given method list.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To create the method list “Tiberius.”:

```bash
dgs-3426:5# create authen_login method_list_name Tiberius
Command: create authen_login method_list_name Tiberius
Success.
dgs-3426:5#
```

config authen_login

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure a user–defined or default method list of authentication methods for user login.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config authen_login [default</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure a user–defined or default method list of authentication methods for users logging on to the Switch. The sequence of methods implemented in this command will affect the authentication result. For example, if a user enters a sequence of methods like <code>tacacs – xtacacs – local</code>, the Switch will send an authentication request to the first <code>tacacs</code> host in the server group. If no response comes from the server host, the Switch will send an authentication request to the second <code>tacacs</code> host in the server group and so on, until the list is exhausted. At that point, the Switch will restart the same sequence with the following protocol listed, <code>xtacacs</code>. If no authentication takes place using the <code>xtacacs</code> list, the <code>local</code> account database set in the Switch is used to authenticate the user. When the local method is used, the privilege level will be dependant on the local account privilege configured on the Switch. Successful login using any of these methods will give the user a “user” privilege only. If the user wishes to upgrade his or her status to the administrator level, the user must implement the <code>enable admin</code> command, followed by a previously configured password. (See the <code>enable admin</code> part of this section for more detailed information, concerning the <code>enable admin</code> command.)</td>
</tr>
<tr>
<td>Parameters</td>
<td>default – The default method list for access authentication, as defined by the user. The user may choose one or a combination of up to four of the following authentication methods:</td>
</tr>
<tr>
<td></td>
<td>• tacacs – Adding this parameter will require the user to be authenticated using...</td>
</tr>
</tbody>
</table>
### config authen_login

**Parameters**

- the TACACS protocol from the remote TACACS server hosts of the TACACS server group list.
- `xtacacs` – Adding this parameter will require the user to be authenticated using the XTACACS protocol from the remote XTACACS server hosts of the XTACACS server group list.
- `tacacs+` – Adding this parameter will require the user to be authenticated using the TACACS+ protocol from the remote TACACS+ server hosts of the TACACS+ server group list.
- `radius` – Adding this parameter will require the user to be authenticated using the RADIUS protocol from the remote RADIUS server hosts of the RADIUS server group list.
- `server_group <string 15>` – Adding this parameter will require the user to be authenticated using a user–defined server group previously configured on the Switch.
- `local` – Adding this parameter will require the user to be authenticated using the local user account database on the Switch.
- `none` – Adding this parameter will require no authentication to access the Switch.

- `method_list_name` – Enter a previously implemented method list name defined by the user. The user may add one, or a combination of up to four of the following authentication methods to this method list:

  - `tacacs` – Adding this parameter will require the user to be authenticated using the TACACS protocol from a remote TACACS server.
  - `xtacacs` – Adding this parameter will require the user to be authenticated using the XTACACS protocol from a remote XTACACS server.
  - `tacacs+` – Adding this parameter will require the user to be authenticated using the TACACS+ protocol from a remote TACACS+ server.
  - `radius` – Adding this parameter will require the user to be authenticated using the RADIUS protocol from a remote RADIUS server.
  - `server_group <string 15>` – Adding this parameter will require the user to be authenticated using a user–defined server group previously configured on the Switch.
  - `local` – Adding this parameter will require the user to be authenticated using the local user account database on the Switch.
  - `none` – Adding this parameter will require no authentication to access the Switch.

**NOTE:** Entering `none` or `local` as an authentication protocol will override any other authentication that follows it on a method list or on the default method list.

**Restrictions**

Only Administrator-level users can issue this command.

---

**Example usage:**

To configure the user defined method list “Tiberius” with authentication methods tacacs, xtabacs and local, in that order:

```
DGS–3426:5#config authen_login method_list_name Tiberius method tacacs xtabacs local
Command: config authen_login method_list_name Tiberius method tacacs xtabacs local
Success.
DGS–3426:5#
```

**Example usage:**

To configure the default method list with authentication methods xtabacs, tacacs+ and local, in that order:
DGS-3426:5# config authen_login default method xtacacs tacacs+ local
Command: config authen_login default method xtacacs tacacs+ local
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>delete authen_login method_list_name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Syntax</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
</tr>
<tr>
<td><strong>Restrictions</strong></td>
</tr>
</tbody>
</table>

Example usage:
To delete the method list name “Tiberius”:

DGS-3426:5# delete authen_login method_list_name Tiberius
Command: delete authen_login method_list_name Tiberius
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>show authen_login</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Syntax</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
</tr>
<tr>
<td><strong>The window will display the following parameters:</strong></td>
</tr>
<tr>
<td>- Method List Name – The name of a previously configured method list name.</td>
</tr>
<tr>
<td>- Priority – Defines which order the method list protocols will be queried for authentication when a user attempts to log on to the Switch. Priority ranges from 1(highest) to 4 (lowest).</td>
</tr>
<tr>
<td>- Method Name – Defines which security protocols are implemented, per method list name.</td>
</tr>
<tr>
<td>- Comment – Defines the type of Method. User–defined Group refers to server group defined by the user. Built–in Group refers to the TACACS, XTACACS, TACACS+ and RADIUS security protocols which are permanently set in the Switch. Keyword refers to authentication using a technique INSTEAD of TACACS / XTACACS / TACACS+ / RADIUS which are local (authentication through the user account on the Switch) and none (no authentication necessary to access any function on the Switch).</td>
</tr>
<tr>
<td><strong>Restrictions</strong></td>
</tr>
</tbody>
</table>
Example usage:

To view the authentication login method list named Tiberius:

```bash
DGS-3426:5#show authen_login method_list_name Tiberius
Command: show authen_login method_list_name Tiberius
```

<table>
<thead>
<tr>
<th>Method List Name</th>
<th>Priority</th>
<th>Method Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiberius</td>
<td>1</td>
<td>tacacs+</td>
<td>Built-in Group</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>tacacs</td>
<td>Built-in Group</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ctsnow</td>
<td>User-defined Group</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>local</td>
<td>Keyword</td>
</tr>
</tbody>
</table>

DGS-3426:5#

---

**create authen_enable method_list_name**

**Purpose**

Used to create a user-defined method list of authentication methods for promoting normal user level privileges to Administrator level privileges on the Switch.

**Syntax**

`create authen_enable method_list_name <string 15>`

**Description**

This command is used to promote users with normal level privileges to Administrator level privileges using authentication methods on the Switch. Once a user acquires normal user level privileges on the Switch, he or she must be authenticated by a method on the Switch to gain administrator privileges on the Switch, which is defined by the Administrator. A maximum of eight enable method lists can be implemented on the Switch.

**Parameters**

- `<string 15>` – Enter an alphanumeric string of up to 15 characters to define the given enable method list to create.

**Restrictions**

Only Administrator-level users can issue this command.

Example usage:

To create a user-defined method list, named “Permit” for promoting user privileges to Administrator privileges:

```bash
DGS-3426:5#create authen_enable method_list_name Permit
Command: show authen_login method_list_name Permit
Success.
```

DGS-3426:5#

---

**config authen_enable**

**Purpose**

Used to configure a user-defined method list of authentication methods for promoting normal user level privileges to Administrator level privileges on the Switch.

**Syntax**

`config authen_enable [default | method_list_name <string 15>] method {tacacs | xtacacs | tacacs+ | radius | server_group <string 15> | local_enable | none} (1)`

**Description**

This command is used to promote users with normal level privileges to Administrator level privileges using authentication methods on the Switch. Once a user acquires normal user level privileges on the Switch, he or she must be authenticated by a method on the Switch to gain administrator privileges on the Switch, which is defined by the Administrator. A maximum of eight enable method lists can be implemented simultaneously on the Switch. The sequence of methods implemented in this command will affect the authentication result. For example, if a user enters a sequence of methods like `tacacs – xtacacs – local_enable`, the Switch will send an authentication request to the first TACACS host in the server group. If no verification is found, the Switch will send an authentication request to the second TACACS host in the server group and so on, until the list is exhausted. At
### config authen_enable

That point, the Switch will restart the same sequence with the following protocol listed, xtacacs. If no authentication takes place using the xtacacs list, the local_enable password set in the Switch is used to authenticate the user.

Successful authentication using any of these methods will give the user an “Admin” level privilege.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>default – The default method list for administration rights authentication, as defined by the user. The user may choose one or a combination of up to four of the following authentication methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• tacacs – Adding this parameter will require the user to be authenticated using the TACACS protocol from the remote TACACS server hosts of the TACACS server group list.</td>
</tr>
<tr>
<td></td>
<td>• xtacacs – Adding this parameter will require the user to be authenticated using the XTACACS protocol from the remote XTACACS server hosts of the XTACACS server group list.</td>
</tr>
<tr>
<td></td>
<td>• tacacs+ – Adding this parameter will require the user to be authenticated using the TACACS+ protocol from the remote TACACS+ server hosts of the TACACS+ server group list.</td>
</tr>
<tr>
<td></td>
<td>• radius – Adding this parameter will require the user to be authenticated using the RADIUS protocol from the remote RADIUS server hosts of the RADIUS server group list.</td>
</tr>
<tr>
<td></td>
<td>• server_group &lt;string 15&gt; – Adding this parameter will require the user to be authenticated using a user–defined server group previously configured on the Switch.</td>
</tr>
<tr>
<td></td>
<td>• local_enable – Adding this parameter will require the user to be authenticated using the local user account database on the Switch.</td>
</tr>
<tr>
<td></td>
<td>• none – Adding this parameter will require no authentication to access the Switch.</td>
</tr>
<tr>
<td>method_list_name</td>
<td>Enter a previously implemented method list name defined by the user (create authen_enable). The user may add one, or a combination of up to four of the following authentication methods to this method list:</td>
</tr>
<tr>
<td></td>
<td>• tacacs – Adding this parameter will require the user to be authenticated using the TACACS protocol from a remote TACACS server.</td>
</tr>
<tr>
<td></td>
<td>• xtacacs – Adding this parameter will require the user to be authenticated using the XTACACS protocol from a remote XTACACS server.</td>
</tr>
<tr>
<td></td>
<td>• tacacs+ – Adding this parameter will require the user to be authenticated using the TACACS+ protocol from a remote TACACS+ server.</td>
</tr>
<tr>
<td></td>
<td>• radius – Adding this parameter will require the user to be authenticated using the RADIUS protocol from a remote RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>• server_group &lt;string 15&gt; – Adding this parameter will require the user to be authenticated using a user–defined server group previously configured on the Switch.</td>
</tr>
<tr>
<td></td>
<td>• local_enable – Adding this parameter will require the user to be authenticated using the local user account database on the Switch. The local enable password of the device can be configured using the “config admin local_password” command.</td>
</tr>
<tr>
<td></td>
<td>• none – Adding this parameter will require no authentication to access the administration level privileges on the Switch.</td>
</tr>
</tbody>
</table>

#### Restrictions

Only Administrator-level users can issue this command.

Example usage:

To configure the user defined method list “Permit” with authentication methods TACACS, XTACACS and local, in that order.
DGS-3426:5# config authen_enable method_list_name Tiberius method tacacs xtacacs local
Command: config authen_enable method_list_name Tiberius method tacacs xtacacs local
Success.
DGS-3426:5#

Example usage:

To configure the default method list with authentication methods XTACACS, TACACS+ and local, in that order:

DGS-3426:5# config authen_enable default method xtacacs tacacs+ local
Command: config authen_enable default method xtacacs tacacs+ local
Success.
DGS-3426:5#

### delete authen_enable method_list_name

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a user–defined method list of authentication methods for promoting normal user level privileges to Administrator level privileges on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>delete authen_enable method_list_name &lt;string 15&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a user–defined method list of authentication methods for promoting user level privileges to Administrator level privileges.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;string 15&gt;</code> – Enter an alphanumeric string of up to 15 characters to define the given enable method list to delete.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete the user–defined method list “Permit”

DGS-3426:5# delete authen_enable method_list_name Permit
Command: delete authen_enable method_list_name Permit
Success.
DGS-3426:5#
### show authen_enable

**Purpose**
Used to display the method list of authentication methods for promoting normal user level privileges to Administrator level privileges on the Switch.

**Syntax**
```
show authen_enable [default | method_list_name <string 15> | all]
```

**Description**
This command is used to delete a user–defined method list of authentication methods for promoting user level privileges to Administrator level privileges.

**Parameters**
- **default** – Entering this parameter will display the default method list for users attempting to gain access to Administrator level privileges on the Switch.
- **method_list_name <string 15>** – Enter an alphanumeric string of up to 15 characters to define the given method list to view.
- **all** – Entering this parameter will display all the authentication login methods currently configured on the Switch.

The window will display the following parameters:

- **Method List Name** – The name of a previously configured method list name.
- **Priority** – Defines which order the method list protocols will be queried for authentication when a user attempts to log on to the Switch. Priority ranges from 1 (highest) to 4 (lowest).
- **Method Name** – Defines which security protocols are implemented, per method list name.
- **Comment** – Defines the type of Method. *User–defined Group* refers to server groups defined by the user. *Built–in Group* refers to the TACACS, XTACACS, TACACS+ and RADIUS security protocols which are permanently set in the Switch. *Keyword* refers to authentication using a technique INSTEAD of TACACS/XTACACS/TACACS+/RADIUS which are local (authentication through the local_enable password on the Switch) and none (no authentication necessary to access any function on the Switch).

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**
To display all method lists for promoting user level privileges to administrator level privileges.

```
DGS-3426:5#show authen_enable all
Command: show authen_enable all

<table>
<thead>
<tr>
<th>Method List Name</th>
<th>Priority</th>
<th>Method Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>1</td>
<td>tacacs+</td>
<td>Built–in Group</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>tacacs</td>
<td>Built–in Group</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ctsnow</td>
<td>User–defined Group</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>local</td>
<td>Keyword</td>
</tr>
<tr>
<td>default</td>
<td>1</td>
<td>tacacs+</td>
<td>Built–in Group</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>local</td>
<td>Keyword</td>
</tr>
</tbody>
</table>

Total Entries : 2
```

DGS-3426:5#
**config authen application**

**Purpose**
Used to configure various applications on the Switch for authentication using a previously configured method list.

**Syntax**
```
config authen application [console | telnet | ssh | http | all] [login | enable] [default | method_list_name <string 15>]
```

**Description**
This command is used to configure Switch configuration applications (console, Telnet, SSH, Web) for login at the user level and at the administration level (authen_enable) utilizing a previously configured method list.

**Parameters**
- **application** – Choose the application to configure. The user may choose one of the following five options to configure.
  - `console` – Choose this parameter to configure the command line interface login method.
  - `telnet` – Choose this parameter to configure the telnet login method.
  - `ssh` – Choose this parameter to configure the Secure Shell login method.
  - `http` – Choose this parameter to configure the web interface login method.
  - `all` – Choose this parameter to configure all applications (console, Telnet, SSH, web) login method.
- **login** – Use this parameter to configure an application for normal login on the user level, using a previously configured method list.
- **enable** – Use this parameter to configure an application for upgrading a normal user level to administrator privileges, using a previously configured method list.
- **default** – Use this parameter to configure an application for user authentication using the default method list.
- **method_list_name <string 15>** – Use this parameter to configure an application for user authentication using a previously configured method list. Enter an alphanumeric string of up to 15 characters to define a previously configured method list.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**

To configure the default method list for the web interface:

```
DGS-3426:5#config authen application http login default
Command: config authen application http login default
Success.
DGS-3426:5#
```

**show authen application**

**Purpose**
Used to display authentication methods for the various applications on the Switch.

**Syntax**
```
show authen application
```

**Description**
This command will display all of the authentication method lists (login, enable administrator privileges) for Switch configuration applications (console, Telnet, SSH, web) currently configured on the Switch.

**Parameters**
None.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**

To display the login and enable method list for all applications on the Switch:
Command: show authen application

<table>
<thead>
<tr>
<th>Application</th>
<th>Login Method List</th>
<th>Enable Method List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>Telnet</td>
<td>Tiberius</td>
<td>default</td>
</tr>
<tr>
<td>SSH</td>
<td>default</td>
<td>default</td>
</tr>
<tr>
<td>HTTP</td>
<td>default</td>
<td>default</td>
</tr>
</tbody>
</table>

create authen server_host

Purpose
Used to create an authentication server host.

Syntax
```
create authen server_host <ipaddr> protocol [tacacs | xtacacs | tacacs+ | radius] {port <int 1–65535> | key [<key_string 254> | none] | timeout <int 1–255> | retransmit <1–20>}
```

Description
This command is used to create an authentication server host for the TACACS/XTACACS/TACACS+/RADIUS security protocols on the Switch. When a user attempts to access the Switch with authentication protocol enabled, the Switch will send authentication packets to a remote TACACS/XTACACS/TACACS+/RADIUS server host on a remote host. The TACACS/XTACACS/TACACS+/RADIUS server host will then verify or deny the request and return the appropriate message to the Switch. More than one authentication protocol can be run on the same physical server host but, remember that TACACS/XTACACS/TACACS+/RADIUS are separate entities and are not compatible with each other. The maximum supported number of server hosts is 16.

Parameters
- `server_host <ipaddr>` – The IP address of the remote server host to add.
- `protocol` – The protocol used by the server host. The user may choose one of the following:
  - `tacacs` – Enter this parameter if the server host utilizes the TACACS protocol.
  - `xtacacs` – Enter this parameter if the server host utilizes the XTACACS protocol.
  - `tacacs+` – Enter this parameter if the server host utilizes the TACACS+ protocol.
  - `radius` – Enter this parameter if the server host utilizes the RADIUS protocol.
- `port <int 1–65535>` – Enter a number between 1 and 65535 to define the virtual port number of the authentication protocol on a server host. The default port number is 49 for TACACS/XTACACS/TACACS+ servers and 1812 and 1813 for RADIUS servers but the user may set a unique port number for higher security.
- `key <key_string 254>` – Authentication key to be shared with a configured TACACS+ or RADIUS server only. Specify an alphanumeric string up to 254 characters.
- `timeout <int 1–255>` – Enter the time in seconds the Switch will wait for the server host to reply to an authentication request. The default value is 5 seconds.
- `retransmit <int 1–20>` – Enter the value in the retransmit field to change how many times the device will resend an authentication request when the server does not respond.

Restrictions
Only Administrator-level users can issue this command.

Example usage:
To create a TACACS+ authentication server host, with port number 1234, a timeout value of 10 seconds and a retransmit count of 5.
DGS-3426:5# create authen server_host 10.1.1.121 protocol tacacs+ port 1234 timeout 10 retransmit 5
Command: create authen server_host 10.1.1.121 protocol tacacs+ port 1234 timeout 10 retransmit 5
Success.
DGS-3426:5#

**config authen server_host**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure a user–defined authentication server host.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>create authen server_host &lt;ipaddr&gt; protocol [tacacs</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure a user–defined authentication server host for the TACACS/XTACACS/TACACS+/RADIUS security protocols on the Switch. When a user attempts to access the switch with the authentication protocol enabled, the Switch will send authentication packets to a remote TACACS/XTACACS/TACACS+/RADIUS server host on a remote host. The TACACS/XTACACS/TACACS+/RADIUS server host will then verify or deny the request and return the appropriate message to the Switch. More than one authentication protocol can be run on the same physical server host but, remember that TACACS/XTACACS/TACACS+/RADIUS are separate entities and are not compatible with each other. The maximum supported number of server hosts is 16.</td>
</tr>
</tbody>
</table>
| Parameters | server_host <ipaddr> – The IP address of the remote server host the user wishes to alter. protocol – The protocol used by the server host. The user may choose one of the following:  
  - tacacs – Enter this parameter if the server host utilizes the TACACS protocol.  
  - xtacacs – Enter this parameter if the server host utilizes the XTACACS protocol.  
  - tacacs+ – Enter this parameter if the server host utilizes the TACACS+ protocol.  
  - radius – Enter this parameter if the server host utilizes the RADIUS protocol.  
port <int 1–65535> – Enter a number between 1 and 65535 to define the virtual port number of the authentication protocol on a server host. The default port number is 49 for TACACS/XTACACS/TACACS+ servers and 1812 and 1813 for RADIUS servers but the user may set a unique port number for higher security.  
key <key_string 254> – Authentication key to be shared with a configured TACACS+ or RADIUS server only. Specify an alphanumeric string up to 254 characters or choose none.  
timeout <int 1–255> – Enter the time in seconds the Switch will wait for the server host to reply to an authentication request. The default value is 5 seconds.  
retransmit <int 1–20> – Enter the value in the retransmit field to change how many times the device will resend an authentication request when the server does not respond. This field is inoperable for the TACACS+ protocol. |
| Restrictions | Only Administrator-level users can issue this command. |

Example usage:

To configure a TACACS+ authentication server host, with port number 4321, a timeout value of 12 seconds and a retransmit count of 4.

DGS-3426:5# config authen server_host 10.1.1.121 protocol tacacs+ port 4321 timeout 12 retransmit 4
Command: config authen server_host 10.1.1.121 protocol tacacs+ port 4321 timeout 12 retransmit 4
Success.
DGS-3426:5#
**delete authen server_host**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a user-defined authentication server host.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete authen server_host &lt;ipaddr&gt; protocol [tacacs</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a user–defined authentication server host previously created on the Switch.</td>
</tr>
</tbody>
</table>
| Parameters       | `server_host <ipaddr>` – The IP address of the remote server host to be deleted.  
|                  | `protocol` – The protocol used by the server host the user wishes to delete. The user may choose one of the following:  
|                  | ▪ `tacacs` – Enter this parameter if the server host utilizes the TACACS protocol.  
|                  | ▪ `xtacacs` – Enter this parameter if the server host utilizes the XTACACS protocol.  
|                  | ▪ `tacacs+` – Enter this parameter if the server host utilizes the TACACS+ protocol.  
|                  | ▪ `radius` – Enter this parameter if the server host utilizes the RADIUS protocol. |
| Restrictions     | Only Administrator-level users can issue this command. |

Example usage:

To delete a user-defined TACACS+ authentication server host:

```
DGS-3426:5#delete authen server_host 10.1.1.121 protocol tacacs+
Command: delete authen server_host 10.1.1.121 protocol tacacs+
Success.
```

**show authen server_host**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to view a user–defined authentication server host.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show authen server_host</code></td>
</tr>
</tbody>
</table>
| Description      | This command is used to view user–defined authentication server hosts previously created on the Switch. The following parameters are displayed:  
|                  | IP Address – The IP address of the authentication server host.  
|                  | Protocol – The protocol used by the server host. Possible results will include TACACS, XTACACS, TACACS+ or RADIUS.  
|                  | Port – The virtual port number on the server host. The default value is 49.  
|                  | Timeout – The time in seconds the Switch will wait for the server host to reply to an authentication request.  
|                  | Retransmit – The value in the retransmit field denotes how many times the device will resend an authentication request when the TACACS server does not respond. This field is inoperable for the tacacs+ protocol.  
|                  | Key – Authentication key to be shared with a configured TACACS+ server only. |
| Parameters       | None. |
| Restrictions     | Only Administrator-level users can issue this command. |

Example usage:

To view authentication server hosts currently set on the Switch:
DGS-3426:5# show authen server_host
Command: show authen server_host

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Protocol</th>
<th>Port</th>
<th>Timeout</th>
<th>Retransmit</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.53.13.94</td>
<td>TACACS</td>
<td>49</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Total Entries: 1

DGS-3426:5#

**create authen server_group**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create a user–defined authentication server group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>create authen server_group &lt;string 15&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create an authentication server group. A server group is a technique used to group TACACS/XTACACS/TACACS+/RADIUS server hosts into user defined categories for authentication using method lists. The user may add up to eight authentication server hosts to this group using the <code>config authen server_group</code> command.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;string 15&gt;</code> – Enter an alphanumeric string of up to 15 characters to define the newly created server group.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To create the server group “group_1”:

**DGS-3426:5# create authen server_group group_1**

Command: `create authen server_group group_1`

Success.

DGS-3426:5#
### config authen server_group

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure a user–defined authentication server group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config authen server_group [tacacs</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure an authentication server group. A server group is a technique used to group TACACS/XTACACS/TACACS+/RADIUS server hosts into user defined categories for authentication using method lists. The user may define the type of server group by protocol or by previously defined server group. Up to eight authentication server hosts may be added to any particular group.</td>
</tr>
</tbody>
</table>
| Parameters | server_group – The user may define the group by protocol groups built into the Switch (TACACS/XTACACS/TACACS+/RADIUS), or by a user–defined group previously created using the `create authen server_group` command.  
  - tacacs – Use this parameter to utilize the built–in TACACS server protocol on the Switch. Only server hosts utilizing the TACACS protocol may be added to this group.  
  - xtacacs – Use this parameter to utilize the built–in XTACACS server protocol on the Switch. Only server hosts utilizing the XTACACS protocol may be added to this group.  
  - tacacs+ – Use this parameter to utilize the built–in TACACS+ server protocol on the Switch. Only server hosts utilizing the TACACS+ protocol may be added to this group.  
  - radius – Use this parameter to utilize the built–in RADIUS server protocol on the Switch. Only server hosts utilizing the RADIUS protocol may be added to this group.  
  - `<string 15>` – Enter an alphanumeric string of up to 15 characters to define the previously created server group. This group may add any combination of server hosts to it, regardless of protocol.  
  add/delete – Enter the correct parameter to add or delete a server host from a server group.  
  server_host <ipaddr> – Enter the IP address of the previously configured server host to add or delete.  
  protocol – Enter the protocol utilized by the server host. There are three options:  
  - tacacs – Use this parameter to define the protocol if the server host is using the TACACS authentication protocol.  
  - xtacacs – Use this parameter to define the protocol if the server host is using the XTACACS authentication protocol.  
  - tacacs+ – Use this parameter to define the protocol if the server host is using the TACACS+ authentication protocol.  
  - radius – Use this parameter to define the protocol if the server host is using the RADIUS authentication protocol. |
| Restrictions | Only Administrator–level users can issue this command. |

Example usage:

To add an authentication host to server group “group_1”:

```
DGS-3426:5# config authen server_group group_1 add server_host 10.1.1.121 protocol tacacs+
Command: config authen server_group group_1 add server_host 10.1.1.121 protocol tacacs+
Success.
DGS-3426:5#
```
### delete authen server_group

**Purpose**
Used to delete a user-defined authentication server group.

**Syntax**
```
delete authen server_group <string 15>
```

**Description**
This command is used to delete an authentication server group.

**Parameters**
- `<string 15>` – Enter an alphanumeric string of up to 15 characters to define the previously created server group to be deleted.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**
To delete the server group “group_1”:

```
DGS-3426:5#delete server_group group_1
Command: delete server_group group_1
Success.
DGS-3426:5#
```

### show authen server_group

**Purpose**
Used to view authentication server groups on the Switch.

**Syntax**
```
show authen server_group <string 15>
```

**Description**
This command is used to display authentication server groups currently configured on the Switch.

This command will display the following fields:
- **Group Name**: The name of the server group currently configured on the Switch, including built-in groups and user-defined groups.
- **IP Address**: The IP address of the server host.
- **Protocol**: The authentication protocol used by the server host.

**Parameters**
- `<string 15>` – Enter an alphanumeric string of up to 15 characters to define the previously created server group to be viewed.

Entering this command without the `<string>` parameter will display all authentication server groups on the Switch.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**
To view authentication server groups currently set on the Switch.

```
DGS-3426:5#show authen server_group
Command: show authen server_group

<table>
<thead>
<tr>
<th>Group Name</th>
<th>IP Address</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctsnow</td>
<td>10.53.13.2</td>
<td>TACACS</td>
</tr>
<tr>
<td>tacacs</td>
<td>10.53.13.94</td>
<td>TACACS</td>
</tr>
<tr>
<td>tacacs+</td>
<td>(This group has no entry)</td>
<td>(This group has no entry)</td>
</tr>
</tbody>
</table>

Total Entries : 4

DGS-3426:5#
```
### config authen parameter response_timeout

**Purpose**
Used to configure the amount of time the Switch will wait for a user to enter authentication before timing out.

**Syntax**
```
config authen parameter response_timeout <int 0–255>
```

**Description**
This command is used to set the time the Switch will wait for a response of authentication from the user.

**Parameters**
- `response_timeout <int 0–255>` – Set the time, in seconds, the Switch will wait for a response of authentication from the user attempting to log in from the command line interface or telnet interface. “0” (integer zero) means there won’t be a time-out. The default value is 30 seconds.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**
To configure the response timeout for 60 seconds:

```
DGS-3426:5# config authen parameter response_timeout 60
Command: config authen parameter response_timeout 60
Success.
```

### config authen parameter attempt

**Purpose**
Used to configure the maximum number of times the Switch will accept authentication attempts.

**Syntax**
```
config authen parameter attempt <int 1–255>
```

**Description**
This command is used to configure the maximum number of times the Switch will accept authentication attempts. Users failing to be authenticated after the set amount of attempts will be denied access to the Switch and will be locked out of further authentication attempts. Command line interface users will have to wait 60 seconds before another authentication attempt. Telnet users will be disconnected from the Switch.

**Parameters**
- `parameter attempt <int 1–255>` – Set the maximum number of attempts the user may try to become authenticated by the Switch, before being locked out.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**
To set the maximum number of authentication attempts at 5:

```
DGS-3426:5# config authen parameter attempt 5
Command: config authen parameter attempt 5
Success.
```

* * *
**show authen parameter**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the authentication parameters currently configured on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show authen parameter</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the authentication parameters currently configured on the Switch, including the response timeout and user authentication attempts. This command will display the following fields: Response timeout – The configured time allotted for the Switch to wait for a response of authentication from the user attempting to log in from the command line interface or telnet interface. User attempts – The maximum number of attempts the user may try to become authenticated by the Switch, before being locked out.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To view the authentication parameters currently set on the Switch:

```
DGS-3426:5# show authen parameter
Command: show authen parameter
Response timeout : 60 seconds
User attempts : 5
DGS-3426:5#
```

**enable admin**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to promote user level privileges to administrator level privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable admin</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is for users who have logged on to the Switch on the normal user level, to become promoted to the administrator level. After logging on to the Switch users will have only user level privileges. To gain access to administrator level privileges, the user will enter this command and will have to enter an authentication password. Possible authentication methods for this function include TACACS, XTACACS, TACACS+, RADIUS, user defined server groups, local enable (local account on the Switch), or no authentication (none). Because XTACACS and TACACS do not support the enable function, the user must create a special account on the server host which has the username “enable”, and a password configured by the administrator that will support the “enable” function. This function becomes inoperable when the authentication policy is disabled.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To enable administrator privileges on the Switch:

```
DGS-3426:5# enable admin
Password: ******
DGS-3426:5#
```
config admin local_enable

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the local enable password for administrator level privileges.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config admin local_enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the locally enabled password for the enable admin command. When a user chooses the “local_enable” method to promote user level privileges to administrator privileges, he or she will be prompted to enter the password configured here, that is set locally on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;password 15&gt; – After entering this command, the user will be prompted to enter the old password, then a new password in an alphanumeric string of no more than 15 characters, and finally prompted to enter the new password again for confirmation. See the example below.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the password for the “local_enable” authentication method.

```
DGS-3426:5#config admin local_enable
Command: config admin local_enable

Enter the old password:
Enter the case-sensitive new password:******
Enter the new password again for confirmation:******
Success.

DGS-3426:5#
```
The steps required to use the Secure Shell (SSH) protocol for secure communication between a remote PC (the SSH Client) and the Switch (the SSH Server), are as follows:

- Create a user account with admin–level access using the `create account admin <username> <password>` command. This is identical to creating any other admin–level user account on the Switch, including specifying a password. This password is used to login to the Switch, once secure communication has been established using the SSH protocol.
- Configure the user account to use a specified authorization method to identify users that are allowed to establish SSH connections with the Switch using the `config ssh user authmode` command. There are three choices as to the method SSH will use to authorize the user, and they are password, publickey and hostbased.
- Configure the encryption algorithm that SSH will use to encrypt and decrypt messages sent between the SSH Client and the SSH Server.
- Finally, enable SSH on the Switch using the `enable ssh` command.

After following the above steps, users can configure an SSH Client on the remote PC and manage the Switch using secure, in–band communication.

The Secure Shell (SSH) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable ssh</td>
<td></td>
</tr>
<tr>
<td>disable ssh</td>
<td></td>
</tr>
<tr>
<td>config ssh authmode</td>
<td>[password</td>
</tr>
<tr>
<td>show ssh authmode</td>
<td></td>
</tr>
<tr>
<td>config ssh server</td>
<td>{maxsession &lt;int 1-8&gt;</td>
</tr>
<tr>
<td>show ssh server</td>
<td></td>
</tr>
<tr>
<td>config ssh user</td>
<td>&lt;username 15&gt; authmode [hostbased [hostname &lt;domain_name 32&gt;</td>
</tr>
<tr>
<td>show ssh user authmode</td>
<td></td>
</tr>
<tr>
<td>config ssh algorithm</td>
<td>[3DES</td>
</tr>
<tr>
<td>show ssh algorithm</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**enable ssh**

**Purpose**
Used to enable SSH.

**Syntax**
`enable ssh`

**Description**
This command is used to enable SSH on the Switch.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

Usage example:

To enable SSH:
DGS–3426:5#enable ssh
Command: enable ssh

TELNET will be disabled when enable SSH.
Success.

DGS–3426:5#

disable ssh

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable SSH.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable ssh</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable SSH on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Usage example:

To disable SSH:

DGS–3426:5#disable ssh
Command: disable ssh
Success.
DGS–3426:5#

config ssh authmode

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the SSH authentication mode setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config ssh authmode [password</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the SSH authentication mode for users attempting to access the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>password – This parameter may be chosen if the administrator wishes to use a locally configured password for authentication on the Switch. publickey – This parameter may be chosen to use a publickey configuration set on a SSH server, for authentication. hostbased – This parameter may be chosen to use a host computer for authentication. This parameter is intended for Linux users requiring SSH authentication techniques and the host computer is running the Linux operating system with a SSH program previously installed. [enable</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the SSH authentication mode by password:
DGS-3426:5# config ssh authmode password enable
Command: config ssh authmode password enable
Success.
DGS-3426:5#

**show ssh authmode**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the SSH authentication mode setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><strong>show ssh authmode</strong></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current SSH authentication set on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

**Example usage:**

To view the current authentication mode set on the Switch:

DGS-3426:5# show ssh authmode
Command: show ssh authmode
The SSH authmode:
Password : Enabled
Publickey : Enabled
Hostbased : Enabled
DGS-3426:5#

**config ssh server**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the SSH server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`{maxsession &lt;int 1-8&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure parameters for the SSH server setting on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>maxsession &lt;int 1–8&gt; – Allows the user to set the number of users that may simultaneously access the Switch. The default setting is 8.</td>
</tr>
<tr>
<td></td>
<td>contimeout &lt;sec 120–600&gt; – Allows the user to set the connection timeout. The user may set a time between 120 and 600 seconds. The default is 120 seconds.</td>
</tr>
<tr>
<td></td>
<td>authfail &lt;int 2–20&gt; – Allows the administrator to set the maximum number of attempts that a user may try to logon utilizing SSH authentication. After the maximum number of attempts is exceeded, the Switch will be disconnected and the user must reauthenticate to the Switch to attempt another login.</td>
</tr>
<tr>
<td></td>
<td>rekey [10min</td>
</tr>
<tr>
<td></td>
<td>tcp_port_number 1-65535 – Specifies the tcp port number used to listen to the connection request from the ssh client.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

**Usage example:**

To configure the SSH server:
show ssh server

Purpose Used to display the SSH server setting.
Syntax `show ssh server`
Description This command is used to display the current SSH server setting.
Parameters None.
Restrictions None.

Usage example:
To display the SSH server:

```
DGS-3426:5# show ssh server
Command: show ssh server
SSH Server Status : Disabled
SSH Max Session : 8
Connection timeout : 120 (sec)
Authenticate failed attempts : 2
Rekey timeout : never
Listened Port Number : 22
DGS-3426:5#
```
Example usage:

To configure the SSH user:

```
DGS–3426:5# config ssh user Rubio authmode Password
Command: config ssh user Rubio authmode Password
Success.
DGS–3426:5#
```

### show ssh user authmode

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the SSH user setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show ssh user authmode</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current SSH user setting.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To display the SSH user:

```
DGS–3426:5#show ssh user authmode
Command: show ssh user authmode

Current Accounts:

<table>
<thead>
<tr>
<th>UserName</th>
<th>Authentication</th>
<th>Host Name</th>
<th>Host IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubio</td>
<td>Hostbased</td>
<td>12334</td>
<td>10.45.25.8</td>
</tr>
</tbody>
</table>

DGS–3426:5#
```

**NOTE:** To configure the SSH user, the administrator must create a user account on the Switch. For information concerning configuring a user account, please see the section of this manual entitled **Basic Switch Commands** and then the command, `create account user`.  

---

286
**config ssh algorithm**

*Purpose*  
Used to configure the SSH algorithm.

*Syntax*  
```
config ssh algorithm [3DES | AES128 | AES192 | AES256 | arcfour | blowfish | cast128 | twofish128 | twofish192 | twofish256 | MD5 | SHA1 | RSA | DSA] [enable | disable]
```

*Description*  
This command is used to configure the desired type of SSH algorithm used for authentication encryption.

*Parameters*  
- **3DES** – This parameter will enable or disable the Triple Data Encryption Standard encryption algorithm.
- **AES128** – This parameter will enable or disable the Advanced Encryption Standard AES128 encryption algorithm.
- **AES192** – This parameter will enable or disable the Advanced Encryption Standard AES192 encryption algorithm.
- **AES256** – This parameter will enable or disable the Advanced Encryption Standard AES256 encryption algorithm.
- **arcfour** – This parameter will enable or disable the Arcfour encryption algorithm.
- **blowfish** – This parameter will enable or disable the Blowfish encryption algorithm.
- **cast128** – This parameter will enable or disable the Cast128 encryption algorithm.
- **twofish128** – This parameter will enable or disable the twofish128 encryption algorithm.
- **twofish192** – This parameter will enable or disable the twofish192 encryption algorithm.
- **MD5** – This parameter will enable or disable the MD5 Message Digest encryption algorithm.
- **SHA1** – This parameter will enable or disable the Secure Hash Algorithm encryption.
- **RSA** – This parameter will enable or disable the RSA encryption algorithm.
- **DSA** – This parameter will enable or disable the Digital Signature Algorithm encryption.
- **[enable | disable]** – This allows users to enable or disable algorithms entered in this command, on the Switch.

*Restrictions*  
Only Administrator and Operator-level users can issue this command.

Usage example:

To configure SSH algorithm:

```
DGS-3426:5# config ssh algorithm Blowfish enable
Command: config ssh algorithm Blowfish enable
Success.
DGS-3426:5#
```

**show ssh algorithm**

*Purpose*  
Used to display the SSH algorithm setting.

*Syntax*  
```
show ssh algorithm
```

*Description*  
This command is used to display the current SSH algorithm setting status.

*Parameters*  
None.

*Restrictions*  
None.

Usage Example:

To display SSH algorithms currently set on the Switch:
DGS-3426:5#show ssh algorithm
Command: show ssh algorithm

Encryption Algorithm
------------------------
3DES : Enabled
AES128 : Enabled
AES192 : Enabled
AES256 : Enabled
arcfour : Enabled
blowfish : Enabled
cast128 : Enabled
twofish128 : Enabled
twofish192 : Enabled
twofish256 : Enabled

Data Integrity Algorithm
------------------------
MD5 : Enabled
SHA1 : Enabled

Public Key Algorithm
---------------------
RSA : Enabled
DSA : Enabled

DGS-3426:5#
SSL COMMANDS

Secure Sockets Layer or SSL is a security feature that will provide a secure communication path between a host and client through the use of authentication, digital signatures and encryption. These security functions are implemented through the use of a cipher suite, which is a security string that determines the exact cryptographic parameters, specific encryption algorithms and key sizes to be used for an authentication session and consists of three levels:

1. **Key Exchange**: The first part of the cipher suite string specifies the public key algorithm to be used. This Switch utilizes the Rivest Shamir Adleman (RSA) public key algorithm and the Digital Signature Algorithm (DSA), specified here as the DHE_DSS Diffie–Hellman (DHE) public key algorithm. This is the first authentication process between client and host as they “exchange keys” in looking for a match and therefore authentication to be accepted to negotiate encryptions on the following level.

2. **Encryption**: The second part of the cipher suite that includes the encryption used for encrypting the messages sent between client and host. The Switch supports two types of crytpology algorithms:
   - **Stream Ciphers**: There are two types of stream ciphers on the Switch, RC4 with 40-bit keys and RC4 with 128-bit keys. These keys are used to encrypt messages and need to be consistent between client and host for optimal use.
   - **CBC Block Ciphers**: CBC refers to Cipher Block Chaining, which means that a portion of the previously encrypted block of encrypted text is used in the encryption of the current block. The Switch supports the 3DES_EDE encryption code defined by the Data Encryption Standard (DES) to create the encrypted text.

3. **Hash Algorithm**: This part of the cipher suite allows the user to choose a message digest function which will determine a Message Authentication Code. This Message Authentication Code will be encrypted with a sent message to provide integrity and prevent against replay attacks. The Switch supports two hash algorithms, MD5 (Message Digest 5) and SHA (Secure Hash Algorithm).

These three parameters are uniquely assembled in four choices on the Switch to create a three layered encryption code for secure communication between the server and the host. The user may implement any one or combination of the cipher suites available, yet different cipher suites will affect the security level and the performance of the secured connection. The information included in the cipher suites is not included with the Switch and requires downloading from a third source in a file form called a certificate. This function of the Switch cannot be executed without the presence and implementation of the certificate file and can be downloaded to the Switch by utilizing a TFTP server. The Switch supports SSLv3 and TLSv1. Other versions of SSL may not be compatible with this Switch and may cause problems upon authentication and transfer of messages from client to host.

The Secure Sockets Layer (SSL) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable ssl</td>
<td>{ciphersuite (RSA_with_RC4_128_MD5</td>
</tr>
<tr>
<td>disable ssl</td>
<td>{ciphersuite (RSA_with_RC4_128_MD5</td>
</tr>
<tr>
<td>config ssl cachetimeout</td>
<td>&lt;value 60–86400&gt;</td>
</tr>
<tr>
<td>show ssl</td>
<td>{certificate}</td>
</tr>
<tr>
<td>show ssl cachetimeout</td>
<td></td>
</tr>
<tr>
<td>download ssl certificate</td>
<td>&lt;ipaddr&gt; certfilename &lt;path_filename 64&gt; keyfilename &lt;path_filename 64&gt;</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
enable ssl

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To enable the SSL function on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`enable ssl {ciphersuite {RSA_with_RC4_128_MD5</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable SSL on the Switch by implementing any one or combination of listed ciphersuites on the Switch. Entering this command without a parameter will enable the SSL status on the Switch. Enabling SSL will disable the web–manager on the Switch.</td>
</tr>
</tbody>
</table>
| Parameters | `ciphersuite` – A security string that determines the exact cryptographic parameters, specific encryption algorithms and key sizes to be used for an authentication session. The user may choose any combination of the following:

- `RSA_with_RC4_128_MD5` – This ciphersuite combines the RSA key exchange, stream cipher RC4 encryption with 128–bit keys and the MD5 Hash Algorithm.
- `RSA_with_3DES_EDE_CBC_SHA` – This ciphersuite combines the RSA key exchange, CBC Block Cipher 3DES_EDE encryption and the SHA Hash Algorithm.
- `DHE_DSS_with_3DES_EDE_CBC_SHA` – This ciphersuite combines the DSA Diffie Hellman key exchange, CBC Block Cipher 3DES_EDE encryption and SHA Hash Algorithm.
- `RSA_EXPORT_with_RC4_40_MD5` – This ciphersuite combines the RSA Export key exchange, stream cipher RC4 encryption with 40–bit keys.

The ciphersuites are enabled by default on the Switch, yet the SSL status is disabled by default. Enabling SSL with a ciphersuite will not enable the SSL status on the Switch. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |
| Example usage: | To enable SSL on the Switch for all ciphersuites: |

```
DGS-3426:5#enable ssl
Command:enable ssl

Note: Web will be disabled if SSL is enabled.
Success.

DGS-3426:5#
```

**NOTE:** Enabling SSL on the Switch will enable all ciphersuites. To utilize a particular ciphersuite, the user must eliminate other ciphersuites by using the `disable ssl` command along with the appropriate ciphersuites.

**NOTE:** Enabling the SSL function on the Switch will disable the port for the web manager (port 80). To log on to the web based manager, the entry of your URL must begin with `https://`. (ex. `https://10.90.90.90`)
### disable ssl

**Purpose**  
To disable the SSL function on the Switch.

**Syntax**  
```bash
disable ssl {ciphersuite {RSA_with_RC4_128_MD5 | RSA_with_3DES_EDE_CBC_SHA | DHE_DSS_with_3DES_EDE_CBC_SHA | RSA_EXPORT_with_RC4_40_MD5} (1) }
```

**Description**  
This command is used to disable SSL on the Switch and can be used to disable any one or combination of listed ciphersuites on the Switch.

**Parameters**  
- **ciphersuite** – A security string that determines the exact cryptographic parameters, specific encryption algorithms and key sizes to be used for an authentication session. The user may choose any combination of the following:
  - `RSA_with_RC4_128_MD5` – This ciphersuite combines the RSA key exchange, stream cipher RC4 encryption with 128-bit keys and the MD5 Hash Algorithm.
  - `RSA_with_3DES_EDE_CBC_SHA` – This ciphersuite combines the RSA key exchange, CBC Block Cipher 3DES_EDE encryption and the SHA Hash Algorithm.
  - `DHE_DSS_with_3DES_EDE_CBC_SHA` – This ciphersuite combines the DSA Diffie Hellman key exchange, CBC Block Cipher 3DES_EDE encryption and SHA Hash Algorithm.
  - `RSA_EXPORT_with_RC4_40_MD5` – This ciphersuite combines the RSA Export key exchange, stream cipher RC4 encryption with 40-bit keys.

**Restrictions**  
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To disable the SSL status on the Switch:

```
DGS-3426:5#disable ssl
Command: disable ssl
Success.
DGS-3426:5#
```

To disable ciphersuite `RSA_EXPORT_with_RC4_40_MD5` only:

```
DGS-3426:5#disable ssl ciphersuite RSA_EXPORT_with_RC4_40_MD5
Command: disable ssl ciphersuite RSA_EXPORT_with_RC4_40_MD5
Success.
DGS-3426:5#
```

### config ssl cachetimeout

**Purpose**  
Used to configure the SSL cache timeout.

**Syntax**  
```bash
config ssl cachetimeout <value 60–86400>
```

**Description**  
This command is used to set the time between a new key exchange between a client and a host using the SSL function. A new SSL session is established every time the client and host go through a key exchange. Specifying a longer timeout will allow the SSL session to reuse the master key on future connections with that particular host, therefore speeding up the negotiation process.

**Parameters**  
- **timeout <value 60–86400>** – Enter a timeout value between 60 and 86400 seconds to specify the total time an SSL key exchange ID stays valid before the SSL module will require a new, full SSL negotiation for connection. The default cache timeout is 600 seconds.

**Restrictions**  
Only Administrator and Operator-level users can issue this command.
Example usage:

To set the SSL cachetimeout for 7200 seconds:

```
DGS-3426:5# config ssl cachetimeout timeout 7200
Command: config ssl cachetimeout timeout 7200
Success.
```

```
DGS-3426:5#
```

### show ssl cachetimeout

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show the SSL cache timeout.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show ssl cachetimeout</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to view the SSL cache timeout currently implemented on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To view the SSL cache timeout on the Switch:

```
DGS-3426:5# show ssl cachetimeout
Command: show ssl cachetimeout
Cache timeout is 600 second(s).
```

```
DGS-3426:5#
```

### show ssl

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to view the SSL status and the certificate file status on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show ssl {certificate}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to view the SSL status on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>certificate – Adding this parameter will allow the user to view the SSL certificate file information currently implemented on the Switch.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To view the SSL status on the Switch:

```
DGS-3426:5# show ssl
Command: show ssl
SSL status-disabled
RSA_WITH_RC4_128_MD5 0x0004 Enabled
RSA_WITH_3DES_EDE_CBC_SHA 0x000A Enabled
DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x0013 Enabled
RSA_EXPORT_WITH_RC4_40_MD5 0x0003 Enabled
```

```
DGS-3426:5#
```

Example usage:

To view certificate file information on the Switch:
DGS-3426:5#show ssl certificate
Command: show ssl certificate

Loaded with RSA Certificate!

DGS-3426:5#

download SSL certificate

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to download a certificate file for the SSL function on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>download ssl certificate &lt;ipaddr&gt; certfilename &lt;path_filename 64&gt; keyfilename &lt;path_filename 64&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to download a certificate file for the SSL function on the Switch from a TFTP server. The certificate file is a data record used for authenticating devices on the network. It contains information on the owner, keys for authentication and digital signatures. Both the server and the client must have consistent certificate files for optimal use of the SSL function. The Switch only supports certificate files with .der file extensions.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;ipaddr&gt;</code> – Enter the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td><code>certfilename &lt;path_filename 64&gt;</code> – Enter the path and the filename of the certificate file to download.</td>
</tr>
<tr>
<td></td>
<td><code>keyfilename &lt;path_filename 64&gt;</code> – Enter the path and the filename of the key exchange file to download.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To download a certificate file and key file to the Switch:

DGS-3426:5#download ssl certificate 10.53.13.94 certfilename c:/cert.der keyfilename c:/pkey.der
Command: download ssl certificate 10.53.13.94 certfilename c:/cert.der keyfilename c:/pkey.der

Certificate Loaded Successfully!

DGS-3426:5#
JUMBO FRAME COMMANDS

Certain switches can support jumbo frames (frames larger than 1536 bytes). To transmit frames of up to 9K (and 9220 Bytes tagged), the user can increase the maximum transmission unit (MTU) size from the default of 1536 by enabling the Jumbo Frame command.

The jumbo frame commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable jumbo_frame</td>
<td></td>
</tr>
<tr>
<td>disable jumbo_frame</td>
<td></td>
</tr>
<tr>
<td>show jumbo_frame</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**enable jumbo_frame**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable the jumbo frame function on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>enable jumbo_frame</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to allow ethernet frames larger than 1536 bytes to be processed by the Switch. The maximum size of the jumbo frame may not exceed 9220 Bytes tagged.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the jumbo frame function on the Switch:

```
DGS-3426:5#enable jumbo_frame
Command: enable jumbo_frame
Success.
DGS-3426:5#
```

**disable jumbo_frame**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the jumbo frame function on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable jumbo_frame</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the jumbo frame function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the jumbo frame function on the Switch:

```
DGS-3426:5#disable jumbo_frame
Command: disable jumbo_frame
Success.
DGS-3426:5#
```
DGS-3426:5#disable jumbo_frame
Command: disable jumbo_frame
Success.

DGS-3426:5#

### show jumbo_frame

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the status of the jumbo frame function on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show jumbo_frame</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the status of the jumbo frame function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Usage Example:

To display the jumbo frame status currently configured on the Switch:

DGS-3426:5#show jumbo_frame
Command: show jumbo_frame

Jumbo frame state : disabled
Maximum Jumbo frame size : 1536 bytes.

DGS-3426:5#
D–LINK SINGLE IP MANAGEMENT (SIM) COMMANDS

Simply put, D–Link Single IP Management is a concept that will stack switches together over Ethernet instead of using stacking ports or modules. Switches using D–Link Single IP Management (labeled here as SIM) must conform to the following rules:

- SIM is an optional feature on the Switch and can easily be enabled or disabled. SIM grouping has no effect on the normal operation of the Switch in the user’s network.
- There are three classifications for switches using SIM. The Commander Switch (CS), which is the master switch of the group, Member Switch (MS), which is a switch that is recognized by the CS as a member of a SIM group, and a Candidate Switch (CaS), which is a switch that has a physical link to the SIM group but has not been recognized by the CS as a member of the SIM group.
- A SIM group can only have one Commander Switch (CS).
- All switches in a particular SIM group must be in the same broadcast domain.
- A SIM group accepts up to 32 switches (numbered 0–32), including the Commander Switch (numbered 0).
- There is no limit to the number of SIM groups in the same broadcast domain, however a single switch can only belong to one group.
- If multiple VLANs are configured, the SIM group will only utilize the default VLAN on any switch.
- SIM allows intermediate devices that do not support SIM. This enables the user to manage a switch that are more than one hop away from the CS.

The SIM group is a group of switches that are managed as a single entity. The xStack® DGS–3400 Series may take on three different roles:

Commander Switch (CS) – This is a switch that has been manually configured as the controlling device for a group, and takes on the following characteristics:

- It has an IP Address.
- It is not a Commander Switch or Member Switch of another Single IP group.
- It is connected to the Member Switches through its management VLAN.

Member Switch (MS) – This is a switch that has joined a single IP group and is accessible from the CS, and it takes on the following characteristics:

- It is not a CS or MS of another IP group.
- It is connected to the CS through the CS management VLAN.

Candidate Switch (CaS) – This is a switch that is ready to join a SIM group but is not yet a member of the SIM group. The Candidate Switch may join the SIM group through an automatic function of the xStack® DGS–3400, or by manually configuring it to be a MS of a SIM group. A switch configured as a CaS is not a member of a SIM group and will take on the following characteristics:

- It is not a CS or MS of another Single IP group.
- It is connected to the CS through the CS management VLAN.

The following rules also apply to the above roles:

1. Each device begins in the Candidate state.
2. CS’s must change their role to CaS and then to MS, to become a MS of a SIM group. Thus the CS cannot directly be converted to a MS.
3. The user can manually configure a CS to become a CaS.
4. A MS can become a CaS by:
   a. Being configured as a CaS through the CS.
   b. If report packets from the CS to the MS time out.
5. The user can manually configure a CaS to become a CS
6. The CaS can be configured through the CS to become a MS.

After configuring one switch to operate as the CS of a SIM group, additional xStack® DGS–3400 switches may join the group by either an automatic method or by manually configuring the Switch to be a MS. The CS will then serve as the in band entry point for access to the MS. The CS’s IP address will become the path to all MS’s of the group and the CS’s Administrator’s password, and/or authentication will control access to all MS’s of the SIM group.
With SIM enabled, the applications in the CS will redirect the packet instead of executing the packets. The applications will decode the packet from the administrator, modify some data, then send it to the MS. After execution, the CS may receive a response packet from the MS, which it will encode and send back to the administrator.

When a CaS becomes a MS, it automatically becomes a member of the first SNMP community (include read/write and read only) to which the CS belongs. However if a MS has its own IP address, it can belong to SNMP communities to which other switches in the group, including the CS, do not belong.

**Upgrade to v1.61**

To better improve SIM management, the xStack® DGS–3400 series switches have been upgraded to version 1.61 in this release. Many improvements have been made, including:

The Commander Switch (CS) now has the capability to automatically rediscover member switches that have left the SIM group, either through a reboot or web malfunction. This feature is accomplished through the use of Discover packets and Maintain packets that previously set SIM members will emit after a reboot. Once a MS has had its MAC address and password saved to the CS’s database, if a reboot occurs in the MS, the CS will keep this MS information in its database and when a MS has been rediscovered, it will add the MS back into the SIM tree automatically. No configuration will be necessary to rediscover these switches. There are some instances where pre–saved MS switches cannot be rediscovered. For example, if the Switch is still powered down, if it has become the member of another group, or if it has been configured to be a Commander Switch, the rediscovery process cannot occur.

This version will support multiple switch upload and downloads for firmware, configuration files and log files, as follows:

- **Firmware** – The switch now supports multiple MS firmware downloads from a TFTP server.
- **Configuration Files** – This switch now supports multiple downloading and uploading of configuration files both to (for configuration restoration) and from (for configuration backup) MS’s, using a TFTP server.
- **Log** – The switch now supports uploading multiple MS log files to a TFTP server.

The SIM commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable sim</td>
<td></td>
</tr>
<tr>
<td>disable sim</td>
<td></td>
</tr>
<tr>
<td>show sim</td>
<td>{candidates {&lt;candidate_id 1–100&gt;}</td>
</tr>
<tr>
<td>reconfig</td>
<td>[member_id &lt;value 1 - 32&gt;</td>
</tr>
<tr>
<td>config sim_group</td>
<td>[add &lt;candidate_id 1–100&gt; {&lt;password&gt;}</td>
</tr>
<tr>
<td>config sim</td>
<td>[(commander {group_name &lt;groupname 64&gt;}</td>
</tr>
<tr>
<td>download sim_ms</td>
<td>[firmware_from_tftp</td>
</tr>
<tr>
<td>upload sim_ms</td>
<td>[configuration_to_tftp</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

### enable sim

**Purpose**

Used to enable Single IP Management (SIM) on the Switch.

**Syntax**

`enable sim`

**Description**

This command is used to enable SIM globally on the Switch. SIM features and functions will not function properly unless this function is enabled.

**Parameters**

None.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

Example usage:

To enable SIM on the Switch:
DGS-3426:5#enable sim
Command: enable sim
Success.
DGS-3426:5#

### disable sim

- **Purpose**: Used to disable Single IP Management (SIM) on the Switch.
- **Syntax**: `disable sim`
- **Description**: This command is used to disable SIM globally on the Switch.
- **Parameters**: None.
- **Restrictions**: Only Administrator-level users can issue this command.

Example usage:

To disable SIM on the Switch:

DGS-3426:5#disable sim
Command: disable sim
Success.
DGS-3426:5#
### show sim

**Purpose**

Used to view the current information regarding the SIM group on the Switch.

**Syntax**

```plaintext
show sim {[candidates {<candidate_id 1–100>} | members {<member_id 1–32>} | group {commander_mac <macaddr>]} | neighbor}
```

**Description**

This command is used to display the current information regarding the SIM group on the Switch, including the following:

- **SIM Version** – Displays the current Single IP Management version on the Switch.
- **Firmware Version** – Displays the current Firmware version on the Switch.
- **Device Name** – Displays the user-defined device name on the Switch.
- **MAC Address** – Displays the MAC Address of the Switch.
- **Capabilities** – Displays the type of switch, be it Layer 2 (L2) or Layer 3 (L3).
- **Platform** – Switch Description including name and model number.
- **SIM State** – Displays the current Single IP Management State of the Switch, whether it be enabled or disabled.
- **Role State** – Displays the current role the Switch is taking, including Commander, Member or Candidate. A Stand-alone switch will always have the commander role.
- **Discovery Interval** – Time in seconds the Switch will send discovery packets out over the network.
- **Hold time** – Displays the time in seconds the Switch will hold discovery results before dropping it or utilizing it.

**Parameters**

- **candidates <candidate_id 1–100>** – Entering this parameter will display information concerning candidates of the SIM group. To view a specific candidate, include that candidate’s ID number, listed from 1 to 100.
- **members <member_id 1–32>** – Entering this parameter will display information concerning members of the SIM group. To view a specific member, include that member’s ID number, listed from 1 to 32.
- **group {commander_mac <macaddr>}** – Entering this parameter will display information concerning the SIM group. To view a specific group, include the commander’s MAC address of the group.
- **neighbor** – Entering this parameter will display neighboring devices of the Switch. A SIM neighbor is defined as a switch that is physically connected to the Switch but is not part of the SIM group. This screen will produce the following results:
  - **Port** – Displays the physical port number of the commander switch where the uplink to the neighbor switch is located.
  - **MAC Address** – Displays the MAC Address of the neighbor switch.
  - **Role** – Displays the role (CS, CaS, MS) of the neighbor switch.

**Restrictions**

- Only Administrator and Operator-level users can issue this command.

---

Example usage:

To display the SIM information in detail:
DGS-3426:5# show sim
Command: show sim

SIM Version : VER-1.61
Firmware Version : 2.35-B06
Device Name :
MAC Address : 00-19-5B-3D-7C-D6
Capabilities : L2
Platform : DGS-3426 L2 Switch
SIM State : Disabled
Role State : Candidate
Discovery Interval : 30 sec
Hold Time : 100 sec

DGS-3426:5#

To display the candidate information in summary, if the candidate ID is specified:

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Platform / Capability</th>
<th>Hold Time</th>
<th>Firmware Version</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00-01-02-03-04-00</td>
<td>DGS-3400 L2 Switch</td>
<td>40</td>
<td>2.00.B46</td>
<td>The Man</td>
</tr>
<tr>
<td>2</td>
<td>00-55-55-00-55-00</td>
<td>DGS-3400 L2 Switch</td>
<td>140</td>
<td>2.00.B46</td>
<td>default master</td>
</tr>
</tbody>
</table>

Total Entries: 2

DGS-3426:5#

To display the member information in summary, if the member ID is specified:

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Platform / Capability</th>
<th>Hold Time</th>
<th>Firmware Version</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00-01-02-03-04-00</td>
<td>DGS-3400 L2 Switch</td>
<td>40</td>
<td>2.00.B46</td>
<td>The Man</td>
</tr>
<tr>
<td>2</td>
<td>00-55-55-00-55-00</td>
<td>DGS-3400 L2 Switch</td>
<td>140</td>
<td>2.00.B46</td>
<td>default master</td>
</tr>
</tbody>
</table>

Total Entries: 2

DGS-3426:5#

To display other groups information in summary, if group is specified:
DGS–3426:5# show sim group

Command: show sim group

SIM Group Name: default

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Platform / Capability</th>
<th>Hold</th>
<th>Firmware</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00–01–02–03–04–00</td>
<td>DGS–3400 L2 Switch</td>
<td>40</td>
<td>2.00.B46</td>
<td>Trinity</td>
</tr>
<tr>
<td>2</td>
<td>00–55–55–00–55–00</td>
<td>DGS–3400 L2 Switch</td>
<td>140</td>
<td>2.00.B46</td>
<td>default master</td>
</tr>
</tbody>
</table>

SIM Group Name: SIM2

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Platform / Capability</th>
<th>Hold</th>
<th>Firmware</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00–01–02–03–04–00</td>
<td>DGS–3400 L2 Switch</td>
<td>40</td>
<td>2.00.B46</td>
<td>Neo</td>
</tr>
<tr>
<td>2</td>
<td>00–55–55–00–55–00</td>
<td>DGS–3400 L2 Switch</td>
<td>140</td>
<td>2.00.B46</td>
<td>default master</td>
</tr>
</tbody>
</table>

'*' means commander switch.

Example usage:

To view SIM neighbors:

DGS–3426:5# show sim neighbor

Command: show sim neighbor

Neighbor Info Table

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC Address</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>00–35–26–00–11–99</td>
<td>Commander</td>
</tr>
<tr>
<td>23</td>
<td>00–35–26–00–11–91</td>
<td>Member</td>
</tr>
<tr>
<td>24</td>
<td>00–35–26–00–11–90</td>
<td>Candidate</td>
</tr>
</tbody>
</table>

Total Entries: 3

DGS–3426:5#

**reconfig**

Purpose

Used to connect to a member switch, through the commander switch, using Telnet.

Syntax

reconfig {member_id <value 1–32 | exit}

Description

This command is used to reconnect to a member switch using Telnet.

Parameters

member_id <value 1–32> – Select the ID number of the member switch to configure.

exit – This command is used to exit from managing the member switch and will return to managing the commander switch.

Restrictions

Only Administrator-level users can issue this command.

Example usage:

To connect to the MS, with member ID 2, through the CS, using the command line interface:

DGS–3426:5# reconfig member_id 2

Command: reconfig member_id 2

DGS–3426:5#

Login:
**config sim_group**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to add candidates and delete members from the SIM group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><strong>config sim_group</strong> [add &lt;candidate_id 1–100&gt; {&lt;password&gt;}]</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to add candidates and delete members from the SIM group by ID number.</td>
</tr>
<tr>
<td>Parameters</td>
<td><em>add</em> &lt;candidate_id 1–100&gt; &lt;password&gt; – Use this parameter to change a Candidate Switch (CaS) to a Member Switch (MS) of a SIM group. The CaS may be defined by its ID number and a password (if necessary).</td>
</tr>
<tr>
<td></td>
<td><em>delete</em> &lt;member_id 1–32&gt; – Use this parameter to delete a member switch of a SIM group. The member switch should be defined by ID number.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To add a member:

```
DGS-3426:5#config sim_group add 2
Command: config sim_group add 2
Please wait for ACK!!!
SIM Config Success !!!
Success.
DGS-3426:5#
```

To delete a member:

```
DGS-3426:5#config sim_group delete 1
Command: config sim_group delete 1
Please wait for ACK!!!
SIM Config Success!!!
Success.
DGS-3426:5#
```
### config sim

**Purpose**
Used to configure role parameters for the SIM protocol on the Switch.

**Syntax**
```bash
config sim [[commander (group_name <groupname 64> | candidate) | dp_interval <sec 30–90> | hold_time <sec 100–255>]]
```

**Description**
This command is used to configure parameters of switches of the SIM.

**Parameters**
- `commander`
  - `group_name <groupname 64>` — Used to update the name of the group. Enter an alphanumeric string of up to 64 characters to rename the SIM group.
  - `dp_interval <30–90>` — The user may set the discovery protocol interval, in seconds that the Switch will send out discovery packets. Returning information to the CS will include information about other switches connected to it. (Ex. MS, CaS). The user may set the `dp_interval` from 30 to 90 seconds.
  - `hold_time <sec 100–255>` — Using this parameter, the user may set the time, in seconds, the CS will hold information sent to it from other switches, utilizing the discovery interval protocol. The user may set the hold time from 100 to 255 seconds.

- `candidate`
  - `dp_interval <30–90>` — The user may set the discovery protocol interval, in seconds that the Switch will send out discovery packets. Returning information to the CS will include information about other switches connected to it. (Ex. MS, CaS). The user may set the `dp_interval` from 30 to 90 seconds.
  - `hold_time <100–255>` — Using this parameter, the user may set the time, in seconds, the Switch will hold information sent to it from other switches, utilizing the discovery interval protocol. The user may set the hold time from 100 to 255 seconds.

**Restrictions**
Only Administrator-level users can issue this command.

**Example usage:**

To change the time interval of the discovery protocol:

```bash
DGS-3426:5# config sim commander
Command: config sim commander
Success.
DGS-3426:5#
```

To change the hold time of the discovery protocol:

```bash
DGS-3426:5# config sim hold_time 120
Command: config sim hold_time 120
Success.
DGS-3426:5#
```

To transfer the CS (commander) to be a CaS (candidate):

```bash
DGS-3426:5# config sim candidate
Command: config sim candidate
Success.
DGS-3426:5#
```

To transfer the Switch to be a CS:
DGS–3426:5# config sim commander
Command: config sim commander

Success.

DGS–3426:5#

To update the name of a group:

DGS–3426:5# config sim commander group_name Trinity
Command: config sim commander group_name Trinity

Success.

DGS–3426:5#

download sim_ms

Purpose
Used to download firmware or configuration file to an indicated device.

Syntax
```
download sim [firmware_from_tftp | configuration_from_tftp] <ipaddr>
<path_filename> {{members <mslist 1–32> | all}}
```

Description
This command is used to download a firmware file or configuration file to a specified device from a TFTP server.

Parameters
- **firmware_from_tftp** – Specify this parameter to download firmware to members of a SIM group.
- **configuration_from_tftp** – Specify this parameter to download a switch configuration to members of a SIM group.
- `<ipaddr>` – Enter the IP address of the TFTP server.
- `<path_filename>` – Enter the path and the filename of the firmware or switch on the TFTP server.
- **members** – Enter this parameter to specify the members to which to download firmware or switch configuration files. The user may specify a member or members by adding one of the following:
  - `<mslist 1–32>` – Enter a value, or values to specify which members of the SIM group will receive the firmware or switch configuration.
  - **all** – Add this parameter to specify all members of the SIM group will receive the firmware or switch configuration.

Restrictions
Only Administrator-level users can issue this command.

Example usage:
To download firmware:

DGS–3426:5# download sim_ms firmware_from_tftp 10.53.13.94 c:/dgs3426.had all
Command: download sim_ms firmware_from_tftp 10.53.13.94 c:/dgs3426.had all

This device is updating firmware. Please wait...

Download Status:

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00–01–02–03–04–00</td>
<td>Success</td>
</tr>
<tr>
<td>2</td>
<td>00–07–06–05–04–03</td>
<td>Success</td>
</tr>
<tr>
<td>3</td>
<td>00–07–06–05–04–03</td>
<td>Success</td>
</tr>
</tbody>
</table>

DGS–3426:5#
To download configuration files:

```
DGS-3426:5# download sim configuration_from_tftp 10.53.13.94 c:/ dgs3426.txt all
Command: download sim configuration_from_tftp 10.53.13.94 c:/ dgs3426.txt all
This device is updating configuration. Please wait...
Download Status:

<table>
<thead>
<tr>
<th>ID</th>
<th>MAC Address</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00–01–02–03–04–00</td>
<td>Success</td>
</tr>
<tr>
<td>2</td>
<td>00–07–06–05–04–03</td>
<td>Success</td>
</tr>
<tr>
<td>3</td>
<td>00–07–06–05–04–03</td>
<td>Success</td>
</tr>
</tbody>
</table>

DGS-3426:5#
```

### upload sim_ms

**Purpose**
User to upload a configuration file to a TFTP server from a specified member of a SIM group.

**Syntax**
```
upload sim_ms [configuration_to_tftp | log_to_tftp] <ipaddr> <path_filename>
{[members <mslist> | all]}
```

**Description**
This command is used to upload a configuration file to a TFTP server from a specified member of a SIM group.

**Parameters**
- `configuration_to_tftp` – Specify this parameter if the user wishes to upload a switch configuration to members of a SIM group.
- `log_to_tftp` – Specify this parameter if the user wishes to upload a switch log to members of a SIM group.
- `<ipaddr>` – Enter the IP address of the TFTP server to which to upload a configuration file.
- `<path_filename>` – Enter a user–defined path and file name on the TFTP server to which to upload configuration files.
- `members` – Enter this parameter to specify the members to which to upload switch configuration or log files. The user may specify a member or members by adding one of the following:
  - `<mslist>` – Enter a value, or values to specify which members of the SIM group will upload the switch configuration or log files.
  - `all` – Add this parameter to specify all members of the SIM group will upload the switch configuration or log files.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To upload configuration files to a TFTP server:

```
DGS-3426:5# upload sim_ms configuration 10.55.47.1 D:\configuration.txt 1
Command: upload sim_ms configuration 10.55.47.1 D:\configuration.txt 1
This device is upload configuration. Please wait several minutes...
Success.
DGS-3426:5#
```
The xStack® DGS–3426P supports Power over Ethernet (PoE) as defined by the IEEE 802.3af specification. Ports 1–24 supply 48 VDC power to PDs over Category 5 or Category 3 UTP Ethernet cables. The xStack® DGS–3426P follows the standard PSE pinout Alternative A, whereby power is sent out over pins 1, 2, 3 and 6. The xStack® DGS–3426P works with all D–Link 802.3af capable devices.

The xStack® DGS–3426P includes the following PoE features:

- The auto–discovery feature recognizes the connection of a PD (Powered Device) and automatically sends power to it.
- The auto–disable feature will occur under two conditions: first, if the total power consumption exceeds the system power limit; and second, if the per port power consumption exceeds the per port power limit.
- The active circuit protection feature automatically disables the port if there is a short. Other ports will remain active.

PDs receive power according to the following classification:

<table>
<thead>
<tr>
<th>Class</th>
<th>Max power used by PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.44 to 12.95W</td>
</tr>
<tr>
<td>1</td>
<td>0.44 to 3.84W</td>
</tr>
<tr>
<td>2</td>
<td>3.84 to 6.49W</td>
</tr>
<tr>
<td>3</td>
<td>6.49 to 12.95W</td>
</tr>
</tbody>
</table>

PSE provides power according to the following classification:

<table>
<thead>
<tr>
<th>Class</th>
<th>Max power provided by PSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.4W</td>
</tr>
<tr>
<td>1</td>
<td>4.0W</td>
</tr>
<tr>
<td>2</td>
<td>7.0W</td>
</tr>
<tr>
<td>3</td>
<td>15.4W</td>
</tr>
</tbody>
</table>

The PoE commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config poe system</td>
<td>{units [&lt;unitlist&gt;</td>
</tr>
<tr>
<td>config poe ports</td>
<td>[all</td>
</tr>
<tr>
<td>show poe ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>show poe system</td>
<td>{units &lt;unitlist&gt;}</td>
</tr>
</tbody>
</table>

Each command is listed in detail in the following sections.
**config poe system**

**Purpose**

Used to configure the parameters for the whole PoE system.

**Syntax**

```
config poe system {units [<unitlist> | all]} {power_limit <value 37–370> | power_disconnect_method [deny_next_port | deny_low_priority_port] management_mode [power_limit | auto]} (1)
```

**Description**

This command is used to configure the parameters for the whole PoE system.

**Parameters**

- **units <unitlist>** – Enter the switch in the switch stack for which to configure the PoE system. This number is based on the unit ID assigned to the switch in the switch stack. The DGS–3426P is the only switch in this series with PoE capabilities.

- **power_limit** – The power limit parameter allows the user to configure the power budget of whole PoE system. The minimum setting is 37 W and the maximum is 370W (depending on the power supplier's capability). Default setting is 370 W.

- **power_disconnect_method** – This parameter is used to configure the power management disconnection method. When the total consumed power exceeds the power budget, the PoE controller initiates a port disconnection to prevent overloading the power supply. The controller uses one of the following two ways to implement the disconnection:
  - **deny_next_port** – After the power budget has been exceeded, the next port attempting to power up is denied, regardless of its priority.
  - **deny_low_priority_port** – After the power budget has been exceeded, the next port attempting to power up, causes the port with the lowest priority to shut down (to allow high – priority ports to power up).

The default setting is **deny_next_port**.

- **management_mode** – Use this parameter to utilize the PoE management mode function of this switch. The user has two choices:
  - **power_limit** – Choose this option to shut down the port if the power limit on the port exceeds the limit stated by the user configured in the **power_limit** field.
  - **auto** – Choose this field to automatically disconnect the power from a given port when it exceeds the maximum power used, as defined by the PD’s (power device) power class, stated previously in this section. When a PD is attached to a port on the Switch, the Power Class is automatically determined. If the PD’s power class is unspecified or there is an error in determining the power class, it is given the power class zero (0).

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To config the PoE System on the Switch:

```
DGS–3426P:5#config poe system units 1 power_limit 300 power_disconnect_method deny_next_port management_mode auto
Command: config poe system units 1 power_limit 300 power_disconnect_method deny_next_port management_mode auto
Success.
DGS–3426P:5#
```
### config poe ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the PoE port settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config poe ports [all</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the PoE port settings.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;portlist&gt;</code> – Specifies a range of ports to be configured or all the ports. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous port list entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
</tr>
<tr>
<td></td>
<td><code>all</code> – Specifies that all ports on the Switch will be configured for PoE.</td>
</tr>
<tr>
<td></td>
<td><code>state</code> – Enables or disables the PoE function on the Switch.</td>
</tr>
<tr>
<td></td>
<td><code>priority</code> – Setting the port priority affects power-up order and shutdown order. Power-up order: When the Switch powers-up or reboots, the ports are powered up according to their priority (critical first, then high and finally low). Shutdown order: When the power limit has been exceeded, the ports will shut down according to their priority if the power disconnect method is set to <code>deny_low_priority_port</code>.</td>
</tr>
<tr>
<td></td>
<td>• <code>critical</code> – Specifying this parameter will nominate these ports as having the highest priority for all configured PoE ports. These ports will be the first ports to receive power and the last to disconnect power.</td>
</tr>
<tr>
<td></td>
<td>• <code>high</code> – Specifying this parameter will nominate these ports as having the second highest priority for receiving power and shutting down power.</td>
</tr>
<tr>
<td></td>
<td>• <code>low</code> – Specifying this parameter will nominate these ports as having the lowest priority for receiving and shutting down power. These ports will be the first ports to have their power disconnected if the <code>power_disconnect_method</code> chosen in the <code>config poe system</code> command is <code>deny_low_priority_port</code>.</td>
</tr>
<tr>
<td></td>
<td><code>power_limit</code> – Allows the user to configure the per-port power limit. If a port exceeds its power limit, the PoE system will shut down that port. The minimum user–defined setting is 1000mW and maximum is 16800mW. The default setting is 15400mW. The user may also choose to define a power class by which to set the power limit, based on the PSE table at the beginning of this section.</td>
</tr>
<tr>
<td></td>
<td>• <code>class_0</code> – Choosing this class will set the maximum port limit at 15.4W.</td>
</tr>
<tr>
<td></td>
<td>• <code>class_1</code> – Choosing this class will set the maximum port limit at 4.0W.</td>
</tr>
<tr>
<td></td>
<td>• <code>class_2</code> – Choosing this class will set the maximum port limit at 7.0W.</td>
</tr>
<tr>
<td></td>
<td>• <code>class_3</code> – Choosing this class will set the maximum port limit at 15.4.0W.</td>
</tr>
<tr>
<td></td>
<td>• <code>user_define</code> – Choosing this parameter will allow the user to set a power limit between 1000 and 16800mW with a default value of 15400mW.</td>
</tr>
</tbody>
</table>

### Example usage:

To config the Switch’s ports for PoE:
DGS-3426P:5# config poe ports 1:1-1:3 state enable priority critical power_limit class_0
Command: config poe ports 1:1-1:3 state enable priority critical power_limit class_0

Power limit has been set to 15400mW(Class 0 PD upper power limit 12.95W + power loss on cable).
Success.

DGS-3426P:5#

### show poe ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the setting and actual values of the whole PoE system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show poe ports {&lt;portlist&gt;}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the settings, actual values, and port configuration of the whole PoE system.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>ports</code> – Choosing this parameter will display the settings for PoE on a port–by–port basis.</td>
</tr>
<tr>
<td>• <code>portlist</code> – Enter a port or range of ports to be displayed for their PoE settings. The port list is specified by listing the lowest switch number and the beginning port number on that switch, separated by a colon. Then the highest switch number, and the highest port number of the range (also separated by a colon) are specified. The beginning and end of the port list range are separated by a dash. For example, 1:3 specifies switch number 1, port 3. 2:4 specifies switch number 2, port 4. 1:3–2:4 specifies all of the ports between switch 1, port 3 and switch 2, port 4 – in numerical order. Non–contiguous portlist entries are separated by a comma. (ex: 1:1–1:3,1:7–1:9)</td>
<td></td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the power settings for the switch’s ports.
DGS–3426P: 5# show poe ports
Command: show poe ports

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Priority</th>
<th>Power Limit(mW)</th>
<th>Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class</td>
<td>Power(mW)</td>
<td>Voltage(decivolts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:1</td>
<td>Enabled</td>
<td>Critical</td>
<td>12000(User–defined)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:2</td>
<td>Enabled</td>
<td>Critical</td>
<td>12000(User–defined)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:3</td>
<td>Enabled</td>
<td>Critical</td>
<td>12000(User–defined)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:4</td>
<td>Enabled</td>
<td>Low</td>
<td>15400(User–defined)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:5</td>
<td>Enabled</td>
<td>Low</td>
<td>15400(User–defined)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:6</td>
<td>Enabled</td>
<td>Low</td>
<td>15400(User–defined)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CTRL+C ESC q Quit SPACE A Next Page ENTER Next Entry A All

---

**show poe system**

**Purpose:**
Used to display the setting and actual values of the whole PoE system.

**Syntax:**
show poe system {units <unitlist>}

**Description:**
This command is used to display the system settings for PoE, such as switch power limit, consumption, remaining useable power and the power disconnection method.

**Parameters:**
- `units <unitlist>` – Select the switch in the switch stack for which to show the PoE system settings. This unit number is based on the unit ID assigned to switches in the switch stack. The DGS–3426P is currently the only switch in this series with PoE capabilities.

**Restrictions:**
None.

Example usage:

To display the power settings for the switch system:
DGS-3426P:5# show poe system
Command: show poe system

Unit 1   PoE System Information
---------------------------------------------
Power Limit : 300 (watts)
Power Consumption : 0 (watts)
Power Remained : 300 (watts)
Power Disconnection Method : deny next port

If Power Disconnection Method is set to deny next port, then the system cannot utilize its maximum power capacity. The maximum unused watt is 19W.

DGS-3426P:5#
COMMAND HISTORY LIST

The switch history commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
</tr>
<tr>
<td>config command_history</td>
<td>&lt;value 1–40&gt;</td>
</tr>
<tr>
<td>show command_history</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

?  

**Purpose**

Used to display all commands in the Command Line Interface (CLI).

**Syntax**

? {<command>}

**Description**

This command is used to display all of the commands available through the Command Line Interface (CLI).

**Parameters**

{<command>} – Entering the question mark with an appropriate command will list all the corresponding parameters for the specified command, along with a brief description of the commands function and similar commands having the same words in the command.

**Restrictions**

None.

**Example usage:**

To display all of the commands in the CLI:

```
DGS-3426:5#?
.
.? clear clear arptable clear attack_log clear counters clear fdb clear log clear port_security_entry_port config 802.1p default_priority config 802.1p user_priority config 802.1x auth_mode config 802.1x auth_parameter ports config 802.1x auth_protocol config 802.1x capability ports config 802.1x init config 802.1x reauth config access_profile profile_id config account config address_binding ip_mac ipaddress config address_binding ip_mac ports config admin local_enable config arpentry
```
To display the parameters for a specific command:

```
DGS-3426:5# ? config stp
Command: ? config stp
Command: config stp
Usage: {maxage <value 6–40> | maxhops <value1–20> | hellotime <value 1–10> | forwarddelay <value 4–30> | txholdcount <value 1–10> | fbpdu [enable | disable] | lbd [enable | disable] | lbd_recover_timer [0 | <value 60–1000000>])
Description: Used to update the STP Global Configuration.
config stp instance_id
config stp mst_config_id
config stp mst_ports
config stp ports
config stp priority
config stp version
DGS-3426:5#
```

### config command_history

**Purpose**
Used to configure the command history.

**Syntax**
```
config command_history <value 1–40>
```

**Description**
This command is used to configure the command history.

**Parameters**

- `<value 1–40>` – The number of previously executed commands maintained in the buffer. Up to 40 of the latest executed commands may be viewed.

**Restrictions**
None.

**Example usage**

To configure the command history:

```
DGS-3426:5# config command_history 20
Command: config command_history 20
Success.
DGS-3426:5#
```

### show command_history

**Purpose**
Used to display the command history.

**Syntax**
```
show command_history
```

**Description**
This command is used to display the command history.

**Parameters**
None.

**Restrictions**
None.

**Example usage**

To display the command history:
DGS-3426:5# show command_history
Command: show command_history
?
? show
show vlan
show command history
DGS-3426:5#
MODIFY BANNER AND PROMPT COMMANDS

Administrator and Operator level users can modify the login banner (greeting message) and command prompt by using the commands described below.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config greeting_message</td>
<td>{default}</td>
</tr>
<tr>
<td>config command_prompt</td>
<td>[&lt;string 16&gt;</td>
</tr>
<tr>
<td>show greeting_message</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**config greeting_message**

- **Purpose**: Used to configure the login banner (greeting message).
- **Syntax**: `config greeting_message {default}`
- **Description**: This command is used to modify the login banner (greeting message).
- **Parameters**
  - `default` – If the user enters `default` to the modify banner command, then the banner will be reset to the original factory banner.
  
  To open the Banner Editor, click `enter` after typing the `config greeting_message` command. Type the information to be displayed on the banner by using the commands described on the Banner Editor:
  - Quit without save: Ctrl+C
  - Save and quit: Ctrl+W
  - Move cursor: Left/Right/Up/Down
  - Delete line: Ctrl+D
  - Erase all setting: Ctrl+X
  - Reload original setting: Ctrl+L

- **Restrictions**: Only Administrator and Operator-level users can issue this command. Other restrictions include:
  - If the "reset" command is executed, the modified banner will remain modified. However, the "reset system/config" command will reset the modified banner to the original factory banner.
  - The capacity of the banner is 6*80. 6 Lines and 80 characters per line.
  - Ctrl+W will only save the modified banner in the DRAM. You need to type "save" command to save it into FLASH.
  - Only valid in threshold level.

**Example usage:**

To modify the banner to read “Good evening Mr. Bond.”:
DGS-3426:5# config greeting_message
Command: config greeting_message

Greeting Messages Editor
=================================================================
DGS-3426 Gigabit Ethernet Switch
Command Line Interface
Firmware: Build 2.60.B26
Copyright(C) 2009 D-Link Corporation. All rights reserved.
=================================================================

<Function Key>                    <Control Key>
Ctrl+C     Quit without save      left/right/
Ctrl+W     Save and quit         up/down  Move cursor
Ctrl+D   Delete line
Ctrl+X   Erase all setting
Ctrl+L   Reload original setting

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

show greeting_message

Purpose Used to view the currently configured greeting message configured on the Switch.
Syntax show greeting_message
Description This command is used to view the currently configured greeting message on the Switch.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:

To view the currently configured greeting message:

DGS-3426:5# show greeting_message
Command: show greeting_message

DGS-3426:5#
### config command prompt

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the command prompt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config command_prompt [string 16</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to change the command prompt.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>string 16</code> – The command prompt can be changed by entering a new name of no more than 16 characters.</td>
</tr>
<tr>
<td></td>
<td><code>username</code> – The command prompt will be changed to the login username.</td>
</tr>
<tr>
<td></td>
<td><code>default</code> – The command prompt will reset to factory default command prompt.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command. Other restrictions include:</td>
</tr>
<tr>
<td></td>
<td>• If the “reset” command is executed, the modified command prompt will remain modified. However, the “reset system/config” command will reset the command prompt to the original factory banner.</td>
</tr>
</tbody>
</table>

**Example usage**

To modify the command prompt to “AtYourService”:

```
DGS-3426:5# config command_prompt AtYourService
Command: config command_prompt AtYourService
Success.
AtYourService:5#
```
The Switch’s Japanese Web-based Access Control (JWAC) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable jwac</td>
<td></td>
</tr>
<tr>
<td>disable jwac</td>
<td></td>
</tr>
<tr>
<td>enable jwac redirect</td>
<td></td>
</tr>
<tr>
<td>disable jwac redirect</td>
<td></td>
</tr>
<tr>
<td>enable jwac forcible_logout</td>
<td></td>
</tr>
<tr>
<td>disable jwac forcible_logout</td>
<td></td>
</tr>
<tr>
<td>enable jwac udp_filtering</td>
<td></td>
</tr>
<tr>
<td>disable jwac udp_filtering</td>
<td></td>
</tr>
<tr>
<td>enable jwac quarantine_server_monitor</td>
<td></td>
</tr>
<tr>
<td>disable jwac quarantine_server_monitor</td>
<td></td>
</tr>
<tr>
<td>config jwac quarantine_server_error_timeout</td>
<td>(destination [quarantine_server</td>
</tr>
<tr>
<td>config jwac redirect</td>
<td>{destination [quarantine_server</td>
</tr>
<tr>
<td>config jwac virtual_ip</td>
<td>&lt;ipaddr&gt;</td>
</tr>
<tr>
<td>config jwac quarantine_server_url</td>
<td>&lt;string 128&gt;</td>
</tr>
<tr>
<td>config jwac clear_quarantine_server_url</td>
<td></td>
</tr>
<tr>
<td>config jwac update_server</td>
<td>[add</td>
</tr>
<tr>
<td>show jwac update_server</td>
<td></td>
</tr>
<tr>
<td>config jwac switch_http_port</td>
<td>&lt; tcp_port_number 1–65535&gt; {[http</td>
</tr>
<tr>
<td>config jwac radius_protocol</td>
<td>[local</td>
</tr>
<tr>
<td>create jwac user</td>
<td>&lt;username 15&gt; {vlan &lt;vlanid 1 – 4094&gt;}</td>
</tr>
<tr>
<td>config jwac user</td>
<td>&lt;username 15&gt; {vlan &lt;vlanid 1 – 4094&gt;}</td>
</tr>
<tr>
<td>delete jwac</td>
<td>[user &lt;username 15&gt;</td>
</tr>
<tr>
<td>show jwac user</td>
<td></td>
</tr>
<tr>
<td>clear jwac auth_state</td>
<td>[ports [all</td>
</tr>
<tr>
<td>show jwac</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Parameters</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>show jwac auth_state ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>show jwac ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>config jwac auth_failover</td>
<td>[enable</td>
</tr>
<tr>
<td>config jwac authorization network</td>
<td>{radius [enable</td>
</tr>
<tr>
<td>config jwac authenticate_page</td>
<td>&lt; japanese</td>
</tr>
<tr>
<td>show jwac authenticate_page</td>
<td>element</td>
</tr>
<tr>
<td>config jwac authentication_page</td>
<td>element</td>
</tr>
<tr>
<td></td>
<td>[japanese</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**enable jwac**

**Purpose**

Used to enable the JWAC function.

**Syntax**

`enable jwac`

**Description**

JWAC and WAC are mutually exclusive functions. They cannot be enabled simultaneously. When the JWAC function is used, PC users/end–users need to pass two stages of authentication. The first stage is to authenticate with the quarantine server and the second stage is to authenticate with the switch. For the second stage, the authentication is similar to WAC, except that there is no port VLAN membership change by JWAC after a host passes authentication. The RADIUS server will share the server’s configuration defined by the 802.1X command set.

**Parameters**

None.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To enable the JWAC function on the Switch:

```
DGS-3426:5#enable jwac
Command: enable jwac
Success.
DGS-3426:5#
```

**disable jwac**

**Purpose**

Used to disable the JWAC function.

**Syntax**

`disable jwac`

**Description**

This command is used to disable JWAC.

**Parameters**

None.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To disable the JWAC function on the Switch:

```
```
DGS–3426:5# disable jwac
Command: disable jwac
Success.
DGS–3426:5#

enable jwac redirect
Purpose Used to enable the JWAC redirect function.
Syntax enable jwac redirect
Description When redirect quarantine_server is enabled, the unauthenticated host will be redirected to the quarantine server when it tries to access a random URL. When redirect jwac_login_page is enabled, the unauthenticated host will be redirected to JWAC login page in the Switch to complete the authentication. When redirect is disabled, an unauthenticated host is only allowed access to the quarantine server and the JWAC login page, all other Web access will be denied.
Parameters None.
Restrictions When enabling redirect to quarantine server, a quarantine server must be configured first. Only Administrator and Operator-level users can issue this command.

Example usage:
To enable JWAC redirect on the Switch:

DGS–3426:5# enable jwac redirect
Command: enable jwac redirect
Success.
DGS–3426:5#

disable jwac redirect
Purpose Used to disable the JWAC redirect function.
Syntax disable jwac redirect
Description This command is used to disable the JWAC redirect function.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:
To enable JWAC redirect on the Switch:

DGS–3426:5# disable jwac redirect
Command: disable jwac redirect
Success.
DGS–3426:5#
enable jwac forcible_logout

Purpose: Used to enable the JWAC forcible logout function.
Syntax: `enable jwac forcible_logout`
Description: When forcible logout is enabled, a PING packet from an authenticated host to the JWAC Switch with TTL=1 will be regarded as a logout request, and the host will be moved back to the unauthenticated state.
Parameters: None.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To enable JWAC forcible logout on the Switch:

```
DGS-3426:5# enable jwac forcible_logout
Command: enable jwac forcible_logout
Success.
DGS-3426:5#
```

disable jwac forcible_logout

Purpose: Used to disable the JWAC forcible logout function.
Syntax: `disable jwac forcible_logout`
Description: This command is used to disable the JWAC forcible logout function.
Parameters: None.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To disable JWAC forcible logout on the Switch:

```
DGS-3426:5# disable jwac forcible_logout
Command: disable jwac forcible_logout
Success.
DGS-3426:5#
```

enable jwac udp_filtering

Purpose: Used to enable the JWAC UDP filtering function.
Syntax: `enable jwac udp_filtering`
Description: When UDP filtering is enabled, all UDP and ICMP packets except DHCP and DNS packets from an unauthenticated hosts will be dropped.
Parameters: None.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To enable the JWAC UDP filtering function:

```
```
DGS-3426:5# enable jwac udp_filtering
Command: enable jwac udp_filtering
Success.
DGS-3426:5#

### disable jwac udp_filtering

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the JWAC UDP filtering function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable jwac udp_filtering</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable JWAC UDP filtering</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the JWAC UDP filtering function:

DGS-3426:5# disable jwac udp_filtering
Command: disable jwac udp_filtering
Success.
DGS-3426:5#

### enable jwac quarantine_server_monitor

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable the JWAC quarantine server monitor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable jwac quarantine_server_monitor function</code></td>
</tr>
<tr>
<td>Description</td>
<td>When the JWAC quarantine server monitor is enabled, the Switch will monitor the Quarantine Server to ensure that it is functioning properly. If the Switch does not detect the Quarantine Server, it will redirect all unauthenticated HTTP requests to the JWAC Login Page by force provided the redirect quarantine server is enabled and the redirect destination is configured as the Quarantine Server.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the JWAC quarantine server monitor:

DGS-3426:5# enable jwac quarantine_server_monitor
Command: enable jwac quarantine_server_monitor
Success.
DGS-3426:5#
**disable jwac quarantine_server_monitor**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the JWAC quarantine server monitor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable jwac quarantine_server_monitor function</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the JWAC quarantine server monitor.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the JWAC quarantine server monitor:

```
DGS-3426:5# disable jwac quarantine_server_monitor
Command: disable jwac quarantine_server_monitor
Success.
DGS-3426:5#
```

**config jwac quarantine_server_error_timeout**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to set quarantine server error timeout.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config jwac quarantine_server_error_timeout &lt;sec 5–300&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>When the quarantine server error timeout is enabled, the Switch will periodically check if the server is functioning properly. If the Switch does not receive any responses from the quarantine server during the configured error timeout interval, the Switch then regards it as not working properly.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;sec 5–300&gt; – To specify the error timeout interval</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the JWAC quarantine server error timeout:

```
DGS-3426:5# config jwac quarantine_server_error_timeout 60
Command: config jwac quarantine_server_error_timeout 60
Success.
DGS-3426:5#
```
**config jwac redirect**

**Purpose**: Used to configure redirect destination and delay time before an unauthenticated host is redirected to the Quarantine Server or the JWAC login Web page.

**Syntax**: `config jwac redirect {destination [quarantine_server | jwac_login_page] | delay_time <sec 0 – 10>}`

**Description**: This command allows you to configure redirect destination and delay time before an unauthenticated host is redirected to the Quarantine Server or the JWAC login Web page.

- The unit of delay_time is in seconds.
- 0 means there is no delay in redirection.

**Parameters**

- **destination** – To specify the destination which the unauthenticated host will be redirected to.
- **delay_time** – To specify the time interval after which the unauthenticated host will be redirected.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure the JWAC redirect on the Switch:

```
DGS-3426:5# config jwac redirect destination jwac_login_page delay_time 5
Command: config jwac redirect destination jwac_login_page delay_time 5
Success.
DGS-3426:5#
```

**config jwac virtual_ip**

**Purpose**: Used to configure jwac virtual ipaddress. This IP is for accepting authentication request from unauthenticated host.

**Syntax**: `config jwac virtual_ip <ipaddr>`

**Description**: The virtual IP of JWAC is for accepting authentication requests from unauthenticated hosts. Only requests sent to this IP will get a valid response. This IP does not respond to ARP requests or ICMP packets!

- Do NOT set this IP on the same subnet as the client PC and the Switch’s IPIF (IP interface).
- Note: the IP address being set shall NOT be identical to any devices in the network, otherwise this will create problem to the original host holding that IP address.

**Parameters**

- `<ipaddr>` – To specify the IP address of the virtual IP.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure the JWAC virtual IP:

```
DGS-3426:5# config jwac virtual_ip 192.168.1.100
Command: config jwac virtual_ip 192.168.1.100
Success.
DGS-3426:5#
```
DGS-3426:5# config jwac virtual_ip 1.1.1.1
Command: config jwac virtual_ip 1.1.1.1
Success.
DGS-3426:5#

**config jwac quarantine_server_url**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure JWAC Quarantine Server URL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config jwac quarantine_server_url &lt;string 128&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command allows you to configure the URL of the quarantine server. If the redirect is enabled and the redirect destination is the quarantine server, when an HTTP request from an unauthenticated host reaches the Switch, the Switch will process this HTTP packet and response a message back to the host to ensure it access the quarantine server with the configured URL. When the PC connects to the specified URL, the quarantine server will request the PC user/End–user to input the user name and password to perform authentication.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;string 128&gt;</code> – To specify the entire URL address of the authentication page of the quarantine server.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the JWAC quarantine server URL:

DGS-3426:5# config jwac quarantine_server_url http://10.90.90.88/authpage.html
Command: config jwac quarantine_server_url http://10.90.90.88/authpage.html
Success.
DGS-3426:5#

**NOTE:** If the quarantine server is linked to the JWAC enabled port on the switch, it must be added to the static FDB correctly before it can work properly.

DGS-3426:5# config jwac clear_quarantine_server_url
Command: config jwac clear_quarantine_server_url
Success.
DGS-3426:5#

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to clear the quarantine server configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config jwac clear_quarantine_server_url</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to clear the quarantine server configuration</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Restrictions</td>
<td>When JWAC is enabled and the redirect destination is the quarantine server, the quarantine server cannot be cleared. Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the JWAC clear quarantine server URL:
DGS-3426:5# config jwac clear_quarantine_server_url
Command: config jwac clear_quarantine_server_url
Success.
DGS-3426:5#

### config jwac update_server

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the servers that the PC may need to connect to in order to complete the JWAC authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config jwac update_server [add</td>
</tr>
<tr>
<td>Description</td>
<td>This command allows a user to add or delete server network addresses to which the traffic from unauthenticated client hosts will not be blocked by the JWAC Switch. Any servers that need ActiveX to accomplish authentication before the client passes the authentication process should be added to the Switch by their IP address. For example, the client may need to access update.microsoft.com or some Anti-Virus software company’s website to check whether the OS or Anti-Virus software of the client is up-to-date; and so these IP addresses need to be added to the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>add – To add a network address to which the traffic will not be blocked</td>
</tr>
<tr>
<td></td>
<td>delete – To delete a network address to which the traffic will not be blocked</td>
</tr>
<tr>
<td></td>
<td>ipaddress – To specify the network address to add or delete</td>
</tr>
<tr>
<td></td>
<td>To set a specific IP address, please use the format x.x.x.x/32</td>
</tr>
<tr>
<td></td>
<td>tcp_port– The accessible TCP port for the specified update server network</td>
</tr>
<tr>
<td></td>
<td>udp_port– The accessible UDP port for the specified update server network</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the JWAC update server:

DGS-3426:5# config jwac update_server add ipaddress 10.90.90.109/24
Command: config jwac update_server add ipaddress 10.90.90.109/24

Update server 10.90.90.0/24 is added
Success.
DGS-3426:5#

**NOTE:** If the update server is linked to the JWAC enabled port on the switch, it must be added to the static FDB correctly before it can work properly.
config jwac switch_http_port

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the TCP port which the JWAC Switch listens to.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config jwac switch_http_port &lt;tcp_port_number 1 - 65535&gt; {[http</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the TCP port which the JWAC Switch listens to. This port number is used in the second stage of the authentication. PC user will have to authenticate to the switch by inputting the user name and password.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;tcp_port_number 1–65535&gt;</code> – A TCP port which the Switch listens to and uses for the authenticating process.</td>
</tr>
<tr>
<td></td>
<td><code>http</code> – To specify the JWAC runs HTTP protocol on this TCP port</td>
</tr>
<tr>
<td></td>
<td><code>https</code> – To specify the JWAC runs HTTPS protocol on this TCP port</td>
</tr>
<tr>
<td>Restrictions</td>
<td>The HTTP cannot runs at TCP port 443, and the HTTPS cannot runs at TCP port 80. Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the JWAC switch HTTP port:

DGS-3426:5# config jwac switch_http_port 8888 http
Command: config jwac switch_http_port 8888 http

Success.

DGS-3426:5#
<table>
<thead>
<tr>
<th><strong>Purpose</strong></th>
<th>Used to configure the JWAC port state.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td>`config jwac ports &lt;portlist&gt;</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>This command is used to configure the JWAC port state. The max authenticating host default value is 50. The default aging time is 1440 minutes. The default idle time is infinite. The default block time is 60 seconds. The default mode is host-based.</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td><code>&lt;portlist&gt;</code> – A port range to set the JWAC state. <code>all</code> – All the Switch ports’ JWAC state is to be configured. <code>state</code> – To specify the port state of JWAC <code>max_authenticating_host</code> – Max number of host process authentication on each port at the same time. The max authenticating hosts depends on a specific project. <code>aging_time</code> – A time period during which an authenticated host will keep the authenticated state. “infinite” indicates never to age out the authenticated host on the port <code>idle_time</code> – If there is no traffic during idle_time, the host will be moved back to the unauthenticated state. “infinite” indicates never to check the idle state of the authenticated host on the port. <code>block_time</code> – If a host fail to pass the authentication, it will be blocked for a period specified by block_time. <code>auth_mode</code> – The port authentication mode can be either host based or port based.</td>
</tr>
<tr>
<td><strong>Restrictions</strong></td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

**Example usage:**

To configure JWAC ports:

```
DGS-3426:5# config jwac port 1-9 state enable
```

Command: `config jwac port 1-9 state enable`

Success.

DGS-3426:5#```
**config jwac radius_protocol**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure radius protocol used by JWAC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config jwac radius_protocol [local</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to specify the RADIUS protocol used by JWAC to complete RADIUS authentication.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
</tbody>
</table>
| `local` – JWAC Switch uses local user DB to complete the authentication  
| `pap` – JWAC Switch uses PAP to communicate with RADIUS Server  
| `chap` – JWAC Switch uses CHAP to communicate with RADIUS Server  
| `ms_chap` – JWAC Switch uses MS-CHAP to communicate with RADIUS Server  
| `ms_chapv2` – JWAC Switch uses MS-CHAPv2 to communicate with RADIUS Server  
| `eap_md5` – JWAC Switch uses EAP MD5 to communicate with RADIUS Server |
| Restrictions | JWAC shares other RADIUS' configuration with 802.1X. When using this command to set the RADIUS protocol, ensure that the RADIUS server added by the `config radius` command supports the protocol.  
| Only Administrator and Operator-level users can issue this command. |

**Example usage:**

To configure the JWAC RADIUS protocol:

```
DGS-3426:5#config jwac radius_protocol ms_chapv2
Command: config jwac radius_protocol ms_chapv2
Success.
DGS-3426:5#
```

**create jwac user**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create JWAC user into local DB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>create jwac user &lt;username 15&gt; {vlan &lt;vlanid 1-4094&gt;}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create JWAC users in the local DB. When “local” is chosen during configuring JWAC RADIUS protocol, the local DB will be used.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
</tbody>
</table>
| `<username 15>` – The user name to be created. The maximum length of the username is 15 characters.  
| `<vlanid 1-4094>` – Target VLAN ID for authenticated host which uses this user account to pass authentication. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

**Example usage:**

To create a JWAC user:

```
DGS-3426:5#config jwac radius_protocol ms_chapv2
Command: config jwac radius_protocol ms_chapv2
Success.
DGS-3426:5#
```
DGS-3426:5# create jwac user 112233
Command: create jwac user 112233

Enter a case-sensitive new password:***
Enter the new password again for confirmation:***
Success.

DGS-3426:5#

**config jwac user**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to update local user DB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config jwac user &lt;username 15&gt; {vlan &lt;vlanid 1-4094&gt;}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to update the local user DB. Only the created user can be configured.</td>
</tr>
</tbody>
</table>
| Parameters    | `<username 15>` – The user name to be created. The max length of the username is 15 characters.  
`<vlanid 1-4094>` – Target VLAN ID for authenticated host which uses this user account to pass authentication. |
| Restrictions  | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure a JWAC user:

DGS-3426:5# config jwac user 112233
Command: config jwac user 112233

Enter an old password:**
Enter a case-sensitive new password:***
Enter the new password again for confirmation:***
Success.

DGS-3426:5#

**delete jwac user**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete JWAC user into local DB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete jwac [user &lt;username 15&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete JWAC users from the local DB.</td>
</tr>
</tbody>
</table>
| Parameters    | `user` – To specify the user name to be deleted  
`all_user` – All user accounts in local DB will be deleted. |
| Restrictions  | Only Administrator and Operator-level users can issue this command. |

Example usage:

To delete a JWAC user:
DGS-3426:5# delete jwac user 112233
Command: delete jwac user 112233
Success.
DGS-3426:5#

show jwac user

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display a JWAC user in the local DB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show jwac user</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display JWAC users in the local DB.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display a JWAC user:

DGS-3426:5# show jwac user
Command: show jwac user

Current Accounts:

<table>
<thead>
<tr>
<th>Username</th>
<th>Password</th>
<th>VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Entries : 1

DGS-3426:5#

clear jwac auth_state

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete host on JWAC enabled ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>clear jwac auth_state [ports [all</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete JWAC host.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ports – To specify the port range to delete host on them</td>
</tr>
<tr>
<td></td>
<td>authenticated – To specify the state of host to delete</td>
</tr>
<tr>
<td></td>
<td>authenticating – To specify the state of host to delete</td>
</tr>
<tr>
<td></td>
<td>blocked – To specify the state of host to delete</td>
</tr>
<tr>
<td></td>
<td>&lt;macaddr&gt; – To delete a specified host with this MAC</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To delete a JWAC host:
DGS-3426:5# clear jwac auth_state ports all blocked
Command: clear jwac auth_state ports all blocked
Success.
DGS-3426:5#

### show jwac

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the JWAC configurations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show jwac</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to show all the configurations of JWAC.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the JWAC configuration:

DGS-3426:5# show jwac
Command: show jwac

<table>
<thead>
<tr>
<th>State</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled Ports</td>
<td>1:1,1:11,1:23,1:25,1:35</td>
</tr>
<tr>
<td>Virtual IP</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Switch HTTP Port</td>
<td>21212 (HTTP)</td>
</tr>
<tr>
<td>UDP Filtering</td>
<td>Enabled</td>
</tr>
<tr>
<td>Forcible Logout</td>
<td>Enabled</td>
</tr>
<tr>
<td>Redirect State</td>
<td>Enabled</td>
</tr>
<tr>
<td>Redirect Delay Time</td>
<td>3 Seconds</td>
</tr>
<tr>
<td>Redirect Destination</td>
<td>Quarantine Server</td>
</tr>
<tr>
<td>Quarantine Server</td>
<td><a href="http://172.18.212.147/pcinventory">http://172.18.212.147/pcinventory</a></td>
</tr>
<tr>
<td>Q-Server Monitor</td>
<td>Enabled (Running)</td>
</tr>
<tr>
<td>Q-Svr Error Timeout</td>
<td>5 Seconds</td>
</tr>
<tr>
<td>Radius Auth-Protocol</td>
<td>PAP</td>
</tr>
<tr>
<td>Authentication Failover</td>
<td>Enabled</td>
</tr>
<tr>
<td>RADIUS Authorization</td>
<td>Disabled</td>
</tr>
<tr>
<td>Local Authorization</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

DGS-3426:5#
### show jwac auth_state ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display JWAC client host information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show jwac auth_state ports {&lt;portlist&gt;}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the information for JWAC client hosts.</td>
</tr>
<tr>
<td></td>
<td>If port 1 is in host-based mode:</td>
</tr>
<tr>
<td></td>
<td>(1) mac 00-00-00-00-00-01 is authenticated without VLAN assigned (may be the specified target VLAN does not exist or the target VLAN has not been specified), the ID of RX VLAN will be displayed (RX VLAN ID is 4004 in this example).</td>
</tr>
<tr>
<td></td>
<td>(2) mac 00-00-00-00-00-02 is authenticated with target VLAN assigned, the ID of target VLAN will be displayed (target VLAN ID is 1234 in this example)</td>
</tr>
<tr>
<td></td>
<td>(3) mac 00-00-00-00-00-03 failed to pass authentication, the VID field will be shown as “-” indicating that packets with SA 00-00-00-00-00-03 will be dropped no matter which VLAN these packets are from.</td>
</tr>
<tr>
<td></td>
<td>(4) mac 00-00-00-00-00-04 attempts to start authentication, the VID field will be shown as “-” until authentication completed.</td>
</tr>
<tr>
<td></td>
<td>If port 2 is in port-based mode:</td>
</tr>
<tr>
<td></td>
<td>(1) mac 00-00-00-00-00-10 is the mac which made port 2 pass authentication, mac address with “(P)” in the end indicates that this authentication is from a port in port-based mode.</td>
</tr>
<tr>
<td></td>
<td>If port 3 is in port-based mode:</td>
</tr>
<tr>
<td></td>
<td>(1) mac 00-00-00-00-00-20 attempts to start authentication, mac address with “(P)” in the end indicates the port-based mode authentication.</td>
</tr>
<tr>
<td></td>
<td>(2) mac 00-00-00-00-00-21 failed to pass authentication, mac address with “(P)” in the end indicates the port-based mode authentication.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE</strong>: In port-based mode, the VLAN ID field is displayed in the same way as host-based mode.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>port</code> – A port range to show the information of client host.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display a JWAC host:
DGS-3426:5#show jwac auth_state ports 1-3
Command: show jwac auth_state ports 1-3

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC Address</th>
<th>State</th>
<th>VID</th>
<th>Priority</th>
<th>Aging Time/Block Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00-00-00-00-00-01</td>
<td>Authenticated</td>
<td>4004</td>
<td>3</td>
<td>Infinite/40</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-02</td>
<td>Authenticated</td>
<td>1234</td>
<td>-</td>
<td>Infinite</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-03</td>
<td>Blocked</td>
<td>-</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-04</td>
<td>Authenticating</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>00-00-00-00-00-10(P)</td>
<td>Authenticated</td>
<td>1234</td>
<td>2</td>
<td>1440</td>
</tr>
<tr>
<td>3</td>
<td>00-00-00-00-00-20(P)</td>
<td>Authenticating</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>00-00-00-00-00-21(P)</td>
<td>Blocked</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
</tbody>
</table>

Total Authenticating Hosts: 2
Total Authenticated Hosts: 3
Total Blocked Hosts: 2

DGS-3426:5#

show jwac ports

Purpose: Used to display JWAC port configuration.
Syntax: show jwac ports {<portlist>}
Parameters: <portlist> – To specify a port range to show the configuration of JWAC.
Restrictions: None.

Example usage:

To display JWAC ports:

DGS-3426:5#show jwac ports
Command: show jwac ports

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Aging Time (Minutes)</th>
<th>Idle Time (Minutes)</th>
<th>Block Time (Seconds)</th>
<th>Auth Mode</th>
<th>Max Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disabled</td>
<td>1440</td>
<td>Infinite</td>
<td>60</td>
<td>Host_based</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Disabled</td>
<td>1440</td>
<td>Infinite</td>
<td>60</td>
<td>Host_based</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>1440</td>
<td>Infinite</td>
<td>60</td>
<td>Host_based</td>
<td>50</td>
</tr>
</tbody>
</table>

DGS-3426:5#
### config jwac authentication_page element

**Purpose**
Used to customize the authentication page.

**Syntax**
```
config jwac authentication_page element [japanese|english] [default|page_title <desc 128>|login_window_title <desc 32>|user_name_title <desc 16>|password_title <desc 16>|logout_window_title <desc 32>]
```

**Description**
This command is used by administrator to customize the JWAC authentication page.

**Parameters**
- `japanese` – Specifies that the page will change to Japanese.
- `english` – Specifies that the page will change to English.
- `default` – Specifies to reset the page element back to default.
- `page_title` – Specifies the title of the authentication page.
- `login_window_title` – The login window title of the authentication page.
- `user_name_title` – Specifies the user name title of the authentication page.
- `password_title` – Specifies the password title of the authentication page.
- `logout_window_title` – The logout window title mapping of the authentication page.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**
To configure the authentication page:
```
DGS-3426:5#config jwac authentication_page element japanese default
Command: config jwac authentication_page element japanese default
Success.
DGS-3426:5#
```

### config jwac auth_failover

**Purpose**
Used to enable or disable JWAC authentication failover.

**Syntax**
```
config jwac auth_failover [enable | disable]
```

**Description**
This command is used by administrators to enable or disable JWAC authentication failover. When the authentication failover is disabled and RADIUS servers are unreachable, the authentication will fail. When the authentication failover is enabled and RADIUS servers authentication are unreachable, the local database will be used to do the authentication. By default, the state is disabled.

**Parameters**
- `enable` – Enable JWAC authentication failover.
- `disable` – Disable JWAC authentication failover.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**
To enable JWAC authentication failover:
```
DGS-3426:5#config jwac auth_failover enable
Command: config jwac auth_failover enable
Success.
DGS-3426:5#
```
**config jwac authorization network**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable or disable the accepting of an authorized configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config jwac authorization network {radius [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used by administrators to configure an authorization network for JWAC. When the authorization is enabled for JWAC’s RADIUS, the authorized data assigned by the RADIUS server will be accepted if the global authorization network is enabled. When the authorization is enabled for JWAC’s local, the authorized data assigned by the local database will be accepted.</td>
</tr>
</tbody>
</table>
| Parameters | `radius` – If specified to enable, the authorized data assigned by the RADIUS server will be accepted if the global authorization network is enabled. The default state is enabled.  
`local` – If specified to enable, the authorized data assigned by the local database will be accepted if the global authorization network is enabled. The default state is enabled. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To enable the accepting of an authorized configuration:

```
DGS-3426:5# config jwac authorization network radius enable
Command: config jwac authorization network radius enable
Success.
DGS-3426:5#
```

**config jwac authenticate_page**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to choose the authenticate page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config jwac authenticate_page [ japanese</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used by administrators to decide which authenticate page to be used.</td>
</tr>
</tbody>
</table>
| Parameters | `japanese` – Choose the Japanese page  
`english` – Choose the English page. The default page is English. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To choose the Japanese authenticate page:

```
DGS-3426:5# config jwac authenticate_page japanese
Command: config jwac authenticate_page japanese
Success.
DGS-3426:5#
```
show jwac authenticate_page element

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show the element mapping of the customize authenticate page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show jwac authenticate_page element</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the elements of the customize authenticate page.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None</td>
</tr>
</tbody>
</table>

Example usage:

To display an element of the authenticate page:

DGS-3426:5#show jwac authenticate_page element

Command: show jwac authenticate_page element

Current Page: Japanese Version

English page element

<table>
<thead>
<tr>
<th>Page Title</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Window Title</td>
<td>: Authentication Login</td>
</tr>
<tr>
<td>User Name Title</td>
<td>: User Name</td>
</tr>
<tr>
<td>Password Title</td>
<td>: Password</td>
</tr>
<tr>
<td>Login Out Window Title</td>
<td>: Logout from the network</td>
</tr>
</tbody>
</table>

Japanese page element

<table>
<thead>
<tr>
<th>Page Title</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Window Title</td>
<td>: 社内 LAN 認証ログイン</td>
</tr>
<tr>
<td>User Name Title</td>
<td>: ユーザ ID</td>
</tr>
<tr>
<td>Password Title</td>
<td>: パスワード</td>
</tr>
<tr>
<td>Login Out Window Title</td>
<td>: 社内 LAN 認証ログアウト</td>
</tr>
</tbody>
</table>

DGS-3426:5#
The cable diagnostics commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>cable_diag ports</td>
<td>[&lt;portlist&gt;</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**cable_diag ports**

**Purpose**
This command is used to diagnose the copper cable. If there is an error in the cable, it can determine the type of error and the position where the error has occurred.

**Syntax**
cable_diag ports [<portlist>|all]

**Description**
When a port is in link-up state, the diagnostics feature will obtain the distance of the cable. When the status is in link–up state, the cable will not have any problem. This diagnostics feature is for copper cable—ports with fiber cables will be not be included.

If the link is up, only cable length will be displayed; no abnormal result will be shown.

If the link is down, the reason may be that the partner was powered off or that the port is disabled, the abnormal results won’t be shown but the cable length will be indicated.

If the link is down and there is some error in the cable, the abnormal results will be shown, but the cable length item won’t be shown.

Please note that the port to be diagnosed will link down for a while during the test, and the traffic will be displayed intermittently during the test.

**Parameters**
- portlist – Specifies a range of ports to be displayed. (UnitID:port number).
- all – Indicates that all ports will be displayed.

**Restrictions**
None.

Example usage:
To display the cable diagnostics function for the Switch.

DGS-3426:5# cable_diag ports 1-7
Command: cable_diag ports 1:1-1:7

Perform Cable Diagnostics ...

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Link Status</th>
<th>Test Result</th>
<th>Cable Length(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>GE</td>
<td>Link down</td>
<td>No Cable</td>
<td></td>
</tr>
<tr>
<td>1:2</td>
<td>GE</td>
<td>Link down</td>
<td>No Cable</td>
<td></td>
</tr>
<tr>
<td>1:3</td>
<td>GE</td>
<td>Link down</td>
<td>No Cable</td>
<td></td>
</tr>
<tr>
<td>1:4</td>
<td>GE</td>
<td>Link down</td>
<td>No Cable</td>
<td></td>
</tr>
<tr>
<td>1:5</td>
<td>GE</td>
<td>Link down</td>
<td>No Cable</td>
<td></td>
</tr>
<tr>
<td>1:6</td>
<td>GE</td>
<td>Link down</td>
<td>No Cable</td>
<td></td>
</tr>
<tr>
<td>1:7</td>
<td>GE</td>
<td>Link up</td>
<td>OK</td>
<td>4</td>
</tr>
</tbody>
</table>

DGS-3426:5#
The MAC-based VLAN commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create mac_based_vlan</td>
<td>mac_address &lt;macaddr&gt; vlan &lt;vlan_name 32&gt;</td>
</tr>
<tr>
<td>delete mac_based_vlan</td>
<td>{mac_address &lt;macaddr&gt; vlan &lt;vlan_name 32&gt;}</td>
</tr>
<tr>
<td>show mac_based_vlan</td>
<td>{mac_address &lt;macaddr&gt;</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**create mac_based_vlan**

- **Purpose:** Used to create a static MAC–based VLAN entry.
- **Syntax:** `create mac_based_vlan mac_address <macaddr> vlan <vlan_name 32>`
- **Description:** This command is used to create a static MAC-based VLAN entry. There is a global limitation of the maximum entries supported for the static MAC-based entry.
- **Parameters:**
  - `mac_address` – The MAC address to be created.
  - `vlan` – The VLAN to be associated with the MAC address.
- **Restrictions:** Only Administrator and Operator-level users can issue this command.

Example usage:

```
To create a static MAC–based VLAN entry.

DGS-3426:5# create mac_based_vlan mac_address 00-00-00-00-00-01 vlan default
Command: create mac_based_vlan mac_address 00-00-00-00-00-01 vlan default
Success.
DGS-3426:5#
```

**delete mac_based_vlan**

- **Purpose:** Used to delete the static MAC–based VLAN entry.
- **Syntax:** `delete mac_based_vlan {mac_address <macaddr> vlan <vlan_name 32>}`
- **Description:** This command is used to delete a database entry. If the MAC address and VLAN are not specified, all static MAC-based VLAN entries will be removed.
- **Parameters:**
  - `mac_address` – The MAC address to be deleted.
  - `vlan` – The VLAN to be associated with the MAC address.
- **Restrictions:** Only Administrator and Operator-level users can issue this command.

Example usage:

```
To delete a static MAC–based VLAN entry.
```

```
```
show mac_based_vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the static MAC-based VLAN entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show mac_based_vlan {mac_address &lt;macaddr&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display static MAC-based VLAN entries.</td>
</tr>
</tbody>
</table>
| Parameters    | mac_address – Specifies the MAC address of the entry you want to display.  
|               | vlan – Specifies the VLAN to be associated with the MAC address. |
| Restrictions  | None. |

Example usage:

To display a static MAC-based VLAN entry:

```
DGS-3426:5# show mac_based_vlan

MAC Address VLAN Status Type
–––––––––----------- ------ -------- --------
00–80–e0–14–a7–57 200 Active Static
00–80–c2–33–c3–45 200 Inactive Static
00–80–c2–33–c3–45 300 Active MAC based access control
00–a2–44–17–32–98 400 Active 802.1x
00–a2–44–17–32–90 500 Active WAC
00–a2–44–17–32–92 600 Active JWAC

Total Entries : 4
```

DGS-3426:5#
## LOOP-BACK DETECTION (LBD) GLOBAL COMMANDS

The Loop-back Detection (LBD) Global commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config loopdetect</td>
<td>{recover_timer [ 0</td>
</tr>
<tr>
<td>config loopdetect ports</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>enable loopdetect</td>
<td></td>
</tr>
<tr>
<td>disable loopdetect</td>
<td></td>
</tr>
<tr>
<td>show loopdetect</td>
<td></td>
</tr>
<tr>
<td>show loopdetect ports</td>
<td>[ all</td>
</tr>
<tr>
<td>config loopdetect trap</td>
<td>[ none</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

### config loopdetect

**Purpose**

Used to configure the loop–back detection function on the switch.

**Syntax**

```
config loopdetect {recover_timer [0 | <value 60–1000000>] | interval <1 - 32767> | mode [port–based | vlan–based]} (1)
```

**Description**

This command is used to set up the loop-back detection function (LBD) for the entire switch.

**Parameters**

- **recover_timer** – The time interval (in seconds) used by the Auto-Recovery mechanism to decide how long to check if the loop status is gone. The valid range is 60 to 1000000. Zero is a special value which specifies the disabled auto–recovery mechanism, hence, users need to recover the disabled port manually. The default value of the recover timer is 60.

- **interval** – The time interval (in seconds) at which the device transmits all the CTP(Configuration Test Protocol) packets to detect the loop–back event. The default setting is 10. The valid range is 1 to 32767.

- **mode** – Choose the loop detection operation mode. In the port-based mode, the port will be shutdown (disabled) when detecting loop; in VLAN-based mode, the port can’t process packets of the VLAN that detecting the loop.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To set the recover time to 0, the interval to 20, and the mode VLAN-based:

```
DGS-3426:5# config loopdetect recover_timer 0 interval 20 vlan–based
Command: config loopdetect recover_timer 0 interval 20 vlan–based
Success.
DGS-3426:5#
```
**config loopdetect ports**

**Purpose**
Used to configure loop – back detection function for the port on the switch.

**Syntax**
`config loopdetect ports [<portlist>| all] state [enable | disable ]`

**Description**
This command is used to enable the loop – back detection function on specific ports.

**Parameters**
- **portlist** – Specifies a range of ports to be configured. To set all ports in the system, you may use “all” parameters.
- **state** – Allows loop–detect to be enabled or disabled for the ports specified in the port list. The default is disabled.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

Example usage:

To set state enable:

```plaintext
DGS-3426:5# config loopdetect ports 1:1-1:5 state enable
Command: config loopdetect ports 1:1-1:5 state enable
Success.
DGS-3426:5#
```

**enable loopdetect**

**Purpose**
Used to globally enable loop-detect function on the switch.

**Syntax**
`enable loopdetect`

**Description**
This command allows the loop-detect function to be globally enabled on the switch. The default value is disabled.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

Example usage:

To enable loop-detect:

```plaintext
DGS-3426:5# enable loopdetect
Command: enable loopdetect
Success.
DGS-3426:5#
```

**disable loopdetect**

**Purpose**
Used to globally disable loop-detect function on the switch.

**Syntax**
`disable loopdetect`

**Description**
The disable loop-detect command allows the loop-detection function to be globally disabled on the switch. The default value is disabled.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

Example usage:

To disable loopdetect:

```plaintext
DGS-3426:5# disable loopdetect
Command: disable loopdetect
Success.
DGS-3426:5#
```
DGS–3426:5# disable loopdetect  
Command: disable loopdetect  
Success.  
DGS–3426:5#  

### show loopdetect

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the switch’s current loop-detect configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show loopdetect</code></td>
</tr>
<tr>
<td>Description</td>
<td>The <code>show loopdetect</code> command displays the switch’s current loop-detect configuration.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display loop-detect:

DGS–3426:5# show loopdetect  
Command: show loopdetect  
LBD Global Settings  
----------------------------------------  
LBD Status : Enabled  
LBD Interval : 20  
LBD Recover Time : 60  
DGS–3426:5#  

### show loopdetect ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the switch’s current per-port loop-detect configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show loopdetect ports [all</td>
</tr>
<tr>
<td>Description</td>
<td>The <code>show loopdetect ports</code> command displays the switch’s current per-port loop-detect configuration and status.</td>
</tr>
</tbody>
</table>
| Parameters       | `portlist` – Specifies a range of ports to be displayed. (UnitID:port number).  
                  | `all` – System will display all ports loopdetect information. |
| Restrictions     | None.                                                                   |

Example usage:

To display loop-detect state of port 1–8 in port–based mode:
To display loop-detect state of port 1–8 in VLAN-based mode:

```
DGS-3426:5# show loopdetect ports 1-8
Command: show loopdetect ports 1-8

Port Loopdetect State Loop VLAN
-------- ------------------ ------------------
1 Enabled None
2 Enabled None
3 Enabled None
4 Enabled None
5 Enabled 2
6 Enabled 9
7 Enabled 20,300,500,600,700,900,1000,2000
8 Enabled None

DGS-3426:5#
```

**config loopdetect trap**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the trap mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config loopdetect trap [ none</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the trap mode. A trap will be sent when the loop condition is detected. Similarly the trap is sent when the loop condition is cleared.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>none</code> – Trap will not be sent for both cases.</td>
</tr>
<tr>
<td></td>
<td><code>loop_detected</code> – Trap is sent when the loop condition is detected.</td>
</tr>
<tr>
<td></td>
<td><code>loop_cleared</code> – Trap is sent when the loop condition is cleared.</td>
</tr>
<tr>
<td></td>
<td><code>both</code> – Trap will be sent for both cases.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the loop-detect trap on the Switch:
DGS-3426P:5# config loopdetect trap loop_detected
Command: config loopdetect trap loop_detected
Success.

DGS-3426:5#
SERIAL NUMBER COMMANDS

The Serial Number commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>show switch</td>
<td></td>
</tr>
<tr>
<td>show stack_device</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**show switch**

**Purpose**: Display switch information.

**Syntax**: `show switch`

**Description**: The command is used to display switch information.

**Parameters**: None.

**Restrictions**: None.

**Example usage:**

To display switch information, (serial number encoded):

```
DGS–3426:5#show switch
Command: show switch

Device Type : DGS–3426 Gigabit Ethernet Switch
MAC Address : 00–01–02–03–04–05
IP Address : 172.18.211.246 (Manual)
VLAN Name : default
Subnet Mask : 255.255.255.0
Default Gateway : 0.0.0.0
Boot PROM Version : Build 1.00–B13
Firmware Version : Build 2.60.B26
Hardware Version : A2
Serial Number : P1X0188000123
System Name :
System Location :
System Contact :
Spanning Tree : Disabled
GVRP : Disabled
IGMP Snooping : Disabled
MLD Snooping : Disabled
TELNET : Enabled (TCP 23)
WEB : Enabled (TCP 80)
SNMP : Disabled
RMON : Disabled
SSL Status : Disabled
SSH Status : Disabled
802.1x : Disabled
Jumbo Frame : Off
```
Clipaging : Enabled  
MAC Notification : Disabled  
Port Mirror : Disabled  
SNTP : Disabled  
HOL Prevention State : Enabled  
Syslog Global State : Disabled  
Single IP Management : Disabled  
Dual Image : Supported  
Password Encryption Status : Disabled

DGS-3426:5#

To display switch information, (serial number not encoded):

DGS-3426:5#show switch
Command: show switch

Device Type : DGS-3426 Gigabit Ethernet Switch  
MAC Address : 00-01-02-03-04-05  
IP Address : 172.18.211.246 (Manual)  
VLAN Name : default  
Subnet Mask : 255.255.255.0  
Default Gateway : 0.0.0.0  
Boot PROM Version : Build 1.00-B13  
Firmware Version : Build 2.60.B26  
Hardware Version : A2  
System Name :  
System Location :  
System Contact :  
Spanning Tree : Disabled  
GVRP : Disabled  
IGMP Snooping : Disabled  
MLD Snooping : Disabled  
TELNET : Enabled (TCP 23)  
WEB : Enabled (TCP 80)  
SNMP : Disabled  
RMON : Disabled  
SSL Status : Disabled  
SSH Status : Disabled  
802.1x : Disabled  
Jumbo Frame : Off  
Clipaging : Enabled  
MAC Notification : Disabled  
Port Mirror : Disabled  
SNTP : Disabled  
HOL Prevention State : Enabled  
Syslog Global State : Disabled  
Single IP Management : Disabled  
Dual Image : Supported  
Password Encryption Status : Disabled

DGS-3426:5#
### show stack_device

**Purpose**
Used to display the information for devices in the stack.

**Syntax**
`show stack_device`

**Description**
This command is used to display stack device information.

**Parameters**
None.

**Restrictions**
None.

#### Example usage:
To display stack information:

```
DGS-3627:5#show stack_device
Command: show stack_device

Box ID Box Type H/W Version Serial Number
------ ------------ ----------- --------------------
1 DGS-3426 1A1G 123456879
```

CTRL+C ESC q Quit SPACE ↑ Next Page ENTER Next Entry ↓ All
The 802.1Q VLAN Function commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create vlan</td>
<td><code>&lt;vlan_name 32&gt; tag &lt;vlanid 1–4094&gt; { type 1q_vlan advertisement }</code></td>
</tr>
<tr>
<td>delete vlan</td>
<td><code>&lt;vlan_name&gt;</code></td>
</tr>
<tr>
<td>config vlan</td>
<td>`&lt;vlan_name &gt; { [ add [ tagged</td>
</tr>
<tr>
<td>config gvrp</td>
<td>config gvrp [&lt;portlist&gt;</td>
</tr>
<tr>
<td>enable gvrp</td>
<td></td>
</tr>
<tr>
<td>disable gvrp</td>
<td></td>
</tr>
<tr>
<td>show vlan</td>
<td>`{&lt;vlan_name 32&gt;</td>
</tr>
<tr>
<td>show gvrp</td>
<td><code>{&lt;portlist&gt;}</code></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**create vlan**

**Purpose**: Used to create a VLAN on the Switch.

**Syntax**: `create vlan <vlan_name 32> tag <vlanid 1–4094> { type 1q_vlan advertisement }`

**Description**: This command is used to create a VLAN on the Switch. The VLAN ID must be always specified for creating a VLAN.

The second command allows the user to create a number of VLANs at a time. A unique VLAN name (e.g. VLAN10) will be automatically assigned by the system. However, the user can use config vlan command to rename the VLAN.

The automatic assignment of VLAN name is based on the following rule: “VLAN”+ID. For example, for VLAN ID 100, the VLAN name will be VLAN100. If this VLAN name is conflict with the name of an existing VLAN, then it will be renamed based on the following rule: “VLAN”+ID+“ALT”+collision count. For example, if this conflict is the second collision, then the name will be VLAN100ALT2.

**Parameters**

- `vlan_name` – The name of the VLAN to be created.
- `tag` – The VLAN ID of the VLAN to be created. The range is 1 – 4094.
- `Advertisement` – Specifies the VLAN as being able to be advertised out.

**Restrictions**

- Only Administrator and Operator-level users can issue this command.

**Example usage**:

To create a VLAN with name “v2” and VLAN ID 2:

```
DGS-3426:5# create vlan v2 tag 2 type 1q_vlan advertisement
Command: create vlan v2 tag 2 type 1q_vlan advertisement
Success.

DGS-3426:5#
```
**delete vlan**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a previously configured VLAN on the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>delete vlan &lt;vlan_name&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a previously configured VLAN on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>vlan_name</code> – The VLAN name of the VLAN to be deleted.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To remove a VLAN v1:

```
DGS-3426:5# delete vlan v1
Command: delete vlan v1
Success.
DGS-3426:5#
```

**config vlan add ports**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to add additional ports to a previously configured VLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config vlan &lt;vlan_name&gt; { [ add [ tagged</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to add ports to the port list of a previously configured VLAN. You can specify the additional ports as tagged, untagged, or forbidden. The default is to assign the ports as untagged. If based on VLAN ID to configure VLAN, multiple VLANs can be configured at a time. During configuration of multiple VLANs, error message will be returned if the configurations are conflict.</td>
</tr>
</tbody>
</table>
| Parameters | `vlan_name` – The name of the VLAN you want to add ports to. 
`tagged` – Specifies the additional ports as tagged. 
`untagged` – Specifies the additional ports as untagged. 
`forbidden` – Specifies the additional ports as forbidden. 
`portlist` – A range of ports to add to the VLAN. 
`advertisement` – Specifies whether the VLAN is able to join a GVRP or not. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure VLAN add ports:

```
DGS-3426:5# config vlan v1 add tagged 2:4–2:8
Command: config vlan v1 add tagged 2:4–2:8
Success.
DGS-3426:5#
```
### config vlan delete ports

**Purpose**
Used to delete one or more ports from a previously configured VLAN.

**Syntax**
```
config vlan <vlan_name> delete <portlist>
```

**Description**
This command is used to delete one or more ports from a previously configured VLAN. If based on VLAN ID to configure VLAN, multiple VLANs can be configured at a time.

**Parameters**
- **vlan_name** – The name of the VLAN you want to delete ports from.
- **portlist** – Specifies a range of ports to be configured.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To delete configured VLAN ports:

```
DGS-3426:5# config vlan v1 delete 2:4–2:8
Command: config vlan v1 delete 2:4–2:8
Success.
DGS-3426:5#
```

### config vlan advertisement

**Purpose**
Used to enable or disable VLAN advertisement.

**Syntax**
```
config vlan <vlan_name> advertisement [enable | disable]
```

**Description**
This command is used to enable or disable VLAN advertisement.

**Parameters**
- **vlan_name** – The name of the VLAN on which you want to configure.
- **advertisement** – Join GVRP or not. If not, the VLAN can’t join dynamically.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure VLAN advertisement:

```
DGS-3426:5# config vlan default advertisement enable
Command: config vlan default advertisement enable
Success.
DGS-3426:5#
```

### enable gvrp

**Purpose**
Used to enable Generic VLAN Registration Protocol (GVRP).

**Syntax**
```
enable gvrp
```

**Description**
This command is used to enable the Generic VLAN Registration Protocol (GVRP). The default setting is disabled.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To enable the Generic VLAN Registration Protocol:

```
```
DGS–3426:5# enable gvrp
Command: enable gvrp
Success.
DGS–3426:5#

disable gvrp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the Generic VLAN Registration Protocol (GVRP).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable gvrp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the Generic VLAN Registration Protocol (GVRP).</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable Generic VLAN Registration Protocol:

DGS–3426:5# disable gvrp
Command: disable gvrp
Success.
DGS–3426:5#

show vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show VLAN information, including parameter settings and operational values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show vlan { [&lt;vlan_name 32&gt;]</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display summary information about each VLAN, which includes: VLANID, VLAN Name, Tagged / untagged / Forbidden/ – status for each port, Member / Non–member/ – status for each port.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>vlan_name</code> – The name of the VLAN to be displayed. <code>vlanid</code> – The ID of the VLAN to be displayed. <code>portlist</code> – The list of ports for which the VLAN information will be displayed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display VLAN information:
show vlan

VID : 1  VLAN Name : default
VLAN TYPE : Static  Advertisement : Enabled
Member Ports : 1:1-1:26,2:1-2:26
Current Tagged Ports:
Static Tagged Ports:
Forbidden Ports:

VID : 2  VLAN Name : v1
VLAN TYPE : Static  Advertisement : Disabled
Member Ports : 1:26,2:26
Static Ports:
Current Tagged Ports:
Current Untagged Ports:
Static Tagged Ports:
Static Untagged Ports:
Forbidden Ports:

Total Entries : 2

show gvrp

Purpose: Used to display the GVRP status for a port list on the Switch.
Syntax: `show gvrp <portlist>`
Description: This command is used to display the GVRP status for a port list on the Switch.
Parameters:
- `portlist` – Specifies a range of ports to be displayed. (UnitID:port number). If no parameter specified, system will display all port GVRP information.
Restrictions: None.

Example usage:

To display GVRP status settings:
DGS-3426:5# show gvrp
Command: show gvrp

Global GVRP : Disabled

<table>
<thead>
<tr>
<th>Port</th>
<th>PVID</th>
<th>GVRP</th>
<th>Ingress Checking</th>
<th>Acceptable Frame Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:2</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:3</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:4</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:5</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:6</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:7</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:8</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:9</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:10</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:11</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:12</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:13</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:14</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:15</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:16</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:17</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
<tr>
<td>1:18</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
<td>All Frames</td>
</tr>
</tbody>
</table>
The MAC-based Access Control (MAC) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable mac_based_access_control</td>
<td></td>
</tr>
<tr>
<td>disable mac_based_access_control</td>
<td></td>
</tr>
<tr>
<td>config mac_based_access_control password</td>
<td>&lt;passwd 16&gt;</td>
</tr>
<tr>
<td>config mac_based_access_control method</td>
<td>[local</td>
</tr>
<tr>
<td>config mac_based_access_control guest_vlan ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>config mac_based_access_control ports</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>create mac_based_access_control</td>
<td>[guest_vlan &lt;vlan_name 32&gt;</td>
</tr>
<tr>
<td>delete mac_based_access_control</td>
<td>[guest_vlan &lt;vlan_name 32&gt;</td>
</tr>
<tr>
<td>clear mac_based_access_control auth_state</td>
<td>[ports [all</td>
</tr>
<tr>
<td>create mac_based_access_control_local mac</td>
<td>&lt;macaddr&gt; [vlan &lt;vlan_name 32&gt;</td>
</tr>
<tr>
<td>config mac_based_access_control_local mac</td>
<td>&lt;macaddr&gt; [vlan &lt;vlan_name 32&gt;</td>
</tr>
<tr>
<td>delete mac_based_access_control_local</td>
<td>[mac &lt;macaddr&gt;</td>
</tr>
<tr>
<td>show mac_based_access_control</td>
<td>{ports [&lt;portlist&gt;] }</td>
</tr>
<tr>
<td>show mac_based_access_control_local</td>
<td>{[mac&lt;macaddr&gt;</td>
</tr>
<tr>
<td>show mac_based_access_control auth_state</td>
<td>ports &lt;portlist&gt;</td>
</tr>
<tr>
<td>config mac_based_access_control auth_failover</td>
<td>[enable</td>
</tr>
<tr>
<td>config mac_based_access_control authorization network</td>
<td>{radius [enable</td>
</tr>
<tr>
<td>config mac_based_access_control max_users</td>
<td>[&lt;value 1-4000&gt;</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

**enable mac_based_access_control**

**Purpose**: Used to enable MAC-based access control.

**Syntax**: `enable mac_based_access_control`

**Description**: This command is used to enable the MAC-based access control function.

**Parameters**: None.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:
To enable MAC-based access control:

```
DGS-3426:5# enable mac_based_access_control
Command: enable mac_based_access_control
Success.
DGS-3426:5#
```

**disable mac_based_access_control**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable MAC-based access control.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>disable mac_based_access_control</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the MAC-based access control function.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable MAC-based access control:

```
DGS-3426:5#disable mac_based_access_control
Command: disable mac_based_access_control
Success.
DGS-3426:5#
```

**config mac_based_access_control password**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the MAC-based access control password.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config mac_based_access_control password &lt;passwd 16&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to set a password that will be used for authentication via a RADIUS server.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;passwd 16&gt; -- In RADIUS mode, the Switch communicates with a RADIUS server using the password. The maximum length of the key is 16.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the MAC-based access control password:

```
DGS-3426:5# config mac_based_access_control password switch
Command: config mac_based_access_control password switch
Success.
DGS-3426:5#
```
### config mac_based_access_control method

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the MAC-based access control authenticating method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config mac_based_access_control method [local</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to specify to authenticate via local database or via RADIUS server.</td>
</tr>
<tr>
<td>Parameters</td>
<td>- <code>local</code> – Specify to authenticate via local database.</td>
</tr>
<tr>
<td></td>
<td>- <code>radius</code> – Specify to authenticate via RADIUS server.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the MAC-based access control authenticating method:

```
DGS-3426:5# config mac_based_access_control method local
Command: config mac_based_access_control method local
Success.
DGS-3426:5#
```

### config mac_based_access_control guest_vlan ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the MAC-based access control guest VLAN membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config mac_based_access_control guest_vlan ports &lt;portlist&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to put the specified port in guest VLAN mode. For those ports not</td>
</tr>
<tr>
<td></td>
<td>contained in the portlist, they are in non-guest VLAN mode. For detailed information for</td>
</tr>
<tr>
<td></td>
<td>operation of guest VLAN mode, please see the description for the <code>config</code></td>
</tr>
<tr>
<td></td>
<td><code>mac_based_access_control</code> command.</td>
</tr>
<tr>
<td>Parameters</td>
<td>- <code>&lt;portlist&gt;</code> – When the guest VLAN is configured for a port successfully, the port will</td>
</tr>
<tr>
<td></td>
<td>make the VLAN assignment based on the assigned VLAN and remove it from the guest VLAN.</td>
</tr>
<tr>
<td></td>
<td>If the user authentication fails, the user will stay in the guest VLAN mode.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure a MAC-based access control guest VLAN:

```
DGS-3426:5# config mac_based_access_control guest_vlan ports 1–8
Command: config mac_based_access_control guest_vlan ports 1–8
Success.
DGS-3426:5#
```
### config mac_based_access_control ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the parameters of MAC–based access control.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config mac_based_access_control ports [&lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the MAC-based access control setting. When the MAC-based access control function is enabled for a port, and the guest VLAN function for this port is disabled, the user attached to this port will not be forwarded unless the user passes authentication. The user that does not pass authentication will not be serviced by the switch. If the user passes authentication, the user will be able to forward traffic operated under the assigned VLAN configuration. When the MAC-based access control function is enabled for a port, and the guest VLAN function for this port is enabled, it will move from the original VLAN member port, and become the member port of the guest_vlan, before the authentication process starts. After the authentication, if a valid VLAN is assigned by the RADIUS server, then this port will be removed from the guest VLAN and become the member port of the assigned VLAN. For guest VLAN mode, there are two situations that need to be considered. If the product doesn’t support MAC-based VLAN classifications when the port has been moved to the authorized VLAN, the subsequent users will not be authenticated again. They will operate in the current authorized VLAN. In the case where it doesn’t support MAC–based VLAN classification, the guest VLAN and host–based mode can’t be enabled at the same time. If the product supports the MAC–based VLAN classification, then each user will be authorized individually and capable of getting its own VLAN. For guest VLAN mode, if the MAC address is authorized, but no VLAN information is assigned from the RADIUS server or the VLAN assigned by RADIUS server is invalid (e.g. the assigned VLAN is not existent), this port/MAC will be removed from the member port of the guest VLAN and become a member port of the original VLAN.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ports – A range of ports enable or disable the MAC-based access control function. state – Specify whether MAC access control function is enabled or disabled. mode – Either port-based or host-based. port_based: means that all users connected to a port share the first authentication result. host_based: means that each user can have its own authentication result. If the Switch doesn’t support MAC–based VLANs, then the Switch will not allow the option host_based for ports that are in guestvlan mode. aging_time – A time period during which an authenticated host will be kept in authenticated state. When the aging time is time–out, the host will be moved back to unauthenticated state. block_time – If a host fails to pass the authentication, the next authentication will not started within block_time unless the user clear the entry state manually. max_user – max number of authenticated clients on per port.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

**Example usage:**

To configure port state:

```
DGS-3426:5#config mac_based_access_control ports 1-8 state enable
Command: config mac_based_access_control ports 1-8 state enable
Success.
DGS-3426:5#
```

To configure port mode:
### create mac_based_access_control

**Purpose**
Used to create a guest VLAN.

**Syntax**
```
create mac_based_access_control [guest_vlan <vlan_name 32>|guest_vlanid <vlanid 1–4094>]
```

**Description**
This command is used to create a guest VLAN.

**Parameters**
- `guest_vlan` – If the MAC address is authenticated failure, the port will be assigned to this vlan.
- `guest_vlanid` – If the MAC address is authenticated failure, the port will be assigned to this vlan.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To create a MAC-based access control guest VLAN:

```
DGS-3426:5# create mac_based_access_control guest_vlan default
Success.
```

### delete mac_based_access_control

**Purpose**
Used to delete a guest VLAN.

**Syntax**
```
delete mac_based_access_control [guest_vlan <vlan_name 32>|guest_vlanid <vlanid 1–4094>]
```

**Description**
This command is used to delete a guest VLAN. When the guest VLAN is deleted, the guest VLAN function is disabled.

**Parameters**
- `guest_vlan` – Specifies the name of the guest VLAN.
- `guest_vlanid` – Specifies the VLAN ID of the guest VLAN.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To delete a guest VLAN:

```
DGS-3426:5# delete mac_based_access_control guest_vlan default
Success.
```

---

DGS-3426:5# config mac_based_access_control ports 1-8 mode port_based
Command: config mac_based_access_control ports 1-8 mode port_based
Success.

DGS-3426:5#
### clear mac_based_access_control auth_state

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to reset the current state of a user. The re-authentication will be started after the user traffic is received again.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`clear mac_based_access_control auth_state [ports [all</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to clear the authentication state of a user (or port). The port (or the user) will return to un-authenticated state. All the timer associated with the port (or the user) will be reset.</td>
</tr>
</tbody>
</table>
| Parameters | `ports` – To specify the port range to delete MAC on them  
`<macaddr>` – To delete a specified host with this MAC |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

**Example usage:**

To clear the MAC authentication state on MAC-enabled ports:

```
DGS-3426:5# clear mac_based_access_control auth_state ports all
Command: clear mac_based_access_control auth_state ports all
Success.
DGS-3426:5#
```

### create mac_based_access_control_local mac

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create the local database entry for MAC-based access control.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`create mac_based_access_control_local mac &lt;macaddr&gt; [vlan &lt;vlan_name 32&gt;]</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create a database entry.</td>
</tr>
</tbody>
</table>
| Parameters | `mac` – The MAC address that access accept by local mode  
`vlan` – If the MAC address is authorized, the port will be assigned to this VLAN  
`vlanid` – If the MAC address is authorized, the port will be assigned to this VLAN |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

**Example usage:**

To create a local database entry:

```
DGS-3426:5# create mac_based_access_control_local mac 00-00-00-00-00-01 vlan default
Command: create mac_based_access_control_local mac 00-00-00-00-00-01 vlan default
Success.
DGS-3426:5#
```
### config mac_based_access_control_local mac

**Purpose**
Used to configure the local database entry.

**Syntax**
```
config mac_based_access_control_local mac <macaddr> [vlan <vlan_name 32>| vlanid <vlanid 1–4094>]
```

**Description**
This command is used to modify a database entry.

**Parameters**
- `mac` – The MAC address that access accept by local mode
- `vlan` – If the MAC address is authorized, the port will be assigned to this VLAN.
- `vlanid` – If the MAC address is authorized, the port will be assigned to this VLAN.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure a local database entry:

DGS-3426:5# config mac_based_access_control_local mac 00-00-00-00-00-01 vlan default

Command: config mac_based_access_control_local mac 00-00-00-00-00-01 vlan default

Success.

DGS-3426:5#

### delete mac_based_access_control_local

**Purpose**
Used to delete the local database entry.

**Syntax**
```
delete mac_based_access_control_local [mac <macaddr> | [vlan <vlan_name 32>|vlanid <vlanid 1–4094>]]
```

**Description**
This command is used to delete a database entry.

**Parameters**
- `mac` – Deletes the database by this MAC address.
- `vlan` – Deletes the database by this VLAN name.
- `vlanid` – Deletes the database by this VLAN ID.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To delete the local database entry by MAC address:

DGS-3426:5# delete mac_based_access_control_local mac 00-00-00-00-00-01

Command: delete mac_based_access_control_local mac 00-00-00-00-00-01

Success.

DGS-3426:5#

To delete the local database entry by VLAN name:

DGS-3426:5# delete mac_based_access_control_local vlan default

Command: delete mac_based_access_control_local vlan default

Success.

DGS-3426:5#
show mac_based_access_control

Purpose: Used to display the MAC-based access control global and port settings.

Syntax: show mac_based_access_control {ports {<portlist>}}

Description: This command is used to display the MAC-based access control global and port settings.

Parameters:
- ports: Display the MAC-based access control port state.

Restrictions: None.

Example usage:

To display MAC-based access control settings:

DGS-3426:5#show mac_based_access_control ports 1-7
Command: show mac_based_access_control ports 1:1-1:7

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Aging Time</th>
<th>Block Time</th>
<th>Auth Mode</th>
<th>Max User</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Disabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
<tr>
<td>1:2</td>
<td>Disabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
<tr>
<td>1:3</td>
<td>Disabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
<tr>
<td>1:4</td>
<td>Disabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
<tr>
<td>1:5</td>
<td>Enabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
<tr>
<td>1:6</td>
<td>Enabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
<tr>
<td>1:7</td>
<td>Enabled</td>
<td>1440</td>
<td>300</td>
<td>Host_based</td>
<td>128</td>
</tr>
</tbody>
</table>

DGS-3426:5#

To display MAC-based access control:

DGS-3426:5#show mac_based_access_control
Command: show mac_based_access_control

MAC Based Access Control
------------------------------------
State                  : Disabled
Method                 : RADIUS
Authentication Failover: Disabled
Password               : default
Max User               : No Limit
Guest VLAN             : default
Guest VLAN Member Ports: 1-8
RADIUS Authorization   : Enabled
Local Authorization    : Enabled

DGS-3426:5#
### show mac_based_access_control_local

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display a MAC-based access control local database.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show mac_based_access_control_local {[mac&lt;macaddr&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the MAC-based access control local database.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
</tbody>
</table>
| mac | Display a MAC-based access control local database by this MAC address  
| vlan | Display a MAC-based access control local database by this VLAN name.  
| vlanid | Display a MAC-based access control local database by this VLAN ID.  |
| Restrictions | None. |

Example usage:

To display a MAC-based access control local:

```
DGS-3426:5# show mac_based_access_control_local
Command: show mac_based_access_control_local

MAC Address VID

00-00-00-00-00-01 1
00-00-00-00-00-02 123
00-00-00-00-00-03 123
00-00-00-00-00-04 1

Total Entries:4

DGS-3426:5#
```

To display MAC-based access control local by MAC address:

```
DGS-3426:5#show mac_based_access_control_local_mac 00-00-00-00-00-01
Command: show mac_based_access_control_local_mac 00-00-00-00-00-01

MAC Address VID

00-00-00-00-00-01 1

Total Entries:1

DGS-3426:5#
```

To display MAC-based access control local by VLAN:

```
DGS-3426:5#show mac_based_access_control_local_vlan 1
Command: show mac_based_access_control_local_vlan 1

MAC Address VID

00-00-00-00-00-01 1

Total Entries:1

DGS-3426:5#
```
DGS-3426:5#show mac_based_access_control_local vlan default
Command: show mac_based_access_control_local_vlan default

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-00-00-00-01</td>
<td>1</td>
</tr>
<tr>
<td>00-00-00-00-04</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Entries: 2

DGS-3426:5#

**show mac_based_access_control auth_state**

**Purpose**: Used to display the MAC-based access control authenticated state.

**Syntax**: show mac_based_access_control auth_state ports <portlist>

**Description**: This command is used to display the MAC-based access control authenticated state.

**Parameters**:
- **ports**: Display MAC-based access control port state

**Restrictions**: None.

Example usage:

To display the MAC-based access control authentication state:

DGS-3426:5#show mac_based_access_control auth_state ports 1-7
Command: show mac_based_access_control auth_state ports 1:1-1:7

<table>
<thead>
<tr>
<th>Port MAC Address</th>
<th>State</th>
<th>VID</th>
<th>Priority</th>
<th>Aging Time/Block Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>00-00-00-00-01</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00-00-00-00-04</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total Authenticating Hosts : 0
Total Authenticated Hosts   : 0
Total Blocked Hosts         : 0

DGS-3426:5#

**config mac_based_access_control auth_failover**

**Purpose**: Used to configure the MAC-based access control authentication failover function.

**Syntax**: config mac_based_access_control auth_failover [enable | disable]

**Description**: When the authentication failover is disabled and if the RADUIUS servers are unreachable, the authentication will fail.

When the authentication failover is enabled, and if the RADIUS servers authentication is unreachable, the local database will be used to do the authentication. The state is disabled, by default.

**Parameters**:
- **enable**: Enables the protocol authentication failover.
- **disable**: Disables the protocol authentication failover.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the MAC-based access control authentication failover:

DGS-3426:5#config mac_based_access_control auth_failover enable
Command: config mac_based_access_control auth_failover enable
Success.
DGS-3426:5#

config mac_based_access_control authorization network

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This function will enable the accepting of an authorized configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config mac_based_access_control authorization network {radius [enable | disable]\</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable or disable the accepting of an authorized configuration. When the authorization is enabled for MAC-based access control’s RADIUS, the authorized data assigned by the RADIUS server will be accepted if the global authorization network is enabled. When the authorization is enabled for MAC-based access controls local, the authorized data assigned by the local database will be accepted.</td>
</tr>
<tr>
<td>Parameters</td>
<td>radius – If specified to enable, the authorized data assigned by the RADUIS server will be accepted if the global authorization network is enabled. The default state is enabled. local – If specified to enable, the authorized data assigned by the local database will be accepted if the global authorization network is enabled. The default state is enabled.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the MAC-based access control authorized network:

DGS-3426:5#config mac_based_access_control authorization network local disable
Command: config mac_based_access_control authorization network local disable
Success.
DGS-3426:5#

config mac_based_access_control max_users

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the maximum number of authorized clients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config mac_based_access_control max_users [&lt;value 1-4000&gt; | no_limit]</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the maximum number of authorized clients. The setting is a global limitation on the maximum number of users that can be learned via MAC-Based access control. In addition to the global limitation, the per port maximum number of users is also limited. It is specified by configure MAC-based access control ports maximum users.</td>
</tr>
<tr>
<td>Parameters</td>
<td>value 1-4000 – Specifies to set the maximum number of authorized clients on the whole device. no_limit – Specifies to not limit the system’s maximum number of users. The default is 128.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the MAC-based access control maximum number of users:
DGS-3426:5# config mac_based_access_control max_users 126
Command: config mac_based_access_control max_users 126

Success.

DGS-3426:5#
Q-IN-Q COMMANDS

The Q-in-Q commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable qinq</td>
<td></td>
</tr>
<tr>
<td>disable qinq</td>
<td></td>
</tr>
<tr>
<td>show qinq</td>
<td></td>
</tr>
<tr>
<td>config qinq ports</td>
<td>[portlist] [all] {role [nni</td>
</tr>
<tr>
<td>show qinq port</td>
<td>{portlist}</td>
</tr>
<tr>
<td>create vlan_translation</td>
<td>[portlist</td>
</tr>
<tr>
<td>delete vlan_translation</td>
<td>[portlist</td>
</tr>
<tr>
<td>show vlan_translation</td>
<td>{ports &lt;portlist}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

enable qinq

Purpose

Used to enable Q-in-Q mode.

Syntax

enable qinq

Description

This command is used to enable the Q-in-Q mode. When enable Q-in-Q, all network port roles will be NNI port and their outer TPID will be set to 88a8. All existed static VLAN will run as SP-VLAN. All dynamically learned L2 address will be cleared. All dynamically registered VLAN entries will be cleared, GVRP will be disabled.

If you need to run GVRP on the switch, you shall enable GVRP manually. In Q-in-Q mode, SP-VLAN GVRP Address (01-80-C2-00-00-0D) will be used by GVRP protocol. The default setting of Q-in-Q is disabled.

Parameters

None.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To enable Q-in-Q:

DGS-3426:5#enable qinq

Command: enable qinq

Success.

DGS-3426:5#
### disable qinq

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the Q-in-Q mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable qinq</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the Q-in-Q mode. All dynamically learned L2 address will be cleared. All dynamically registered VLAN entries will be cleared. GVRP will disable. If you need to run GVRP on the switch, you shall enable GVRP manually. All existed SP-VLAN will run as static 1Q VLAN.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable Q-in-Q:

```
DGS-3426:5#disable qinq
Command: disable qinq
Success.
DGS-3426:5#
```

### show qinq

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display global Q-in-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show qinq</code></td>
</tr>
<tr>
<td>Description</td>
<td>The command is used to display the global Q-in-Q status</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display global Q-in-Q status:

```
DGS-3426:5#show qinq
Commands: show qinq
QinQ Status: Enabled
DGS-3426:5#
```
config qinq ports

Purpose: Used to configure a Q-in-Q port.
Syntax: `config qinq ports [<portlist>|all] {role [nni | uni] | missdrop [enable | disable] | tpid <hex 0x1–0xffff>}` (1)

Description: The command is used to configure the Q-in-Q VLAN mode for ports, including:
- Port role in Q-in-Q mode, enable/disable SP-VLAN assignment miss drop, and port TPID.
- If missdrop is enabled, the packet that does not match any VLAN translation rules will be dropped. If disabled, the packet will be assigned to the PVID of the received port.
- This setting will not be effective when Q-in-Q mode is disabled.

Parameters:
- `<portlist>` – A range of ports to configure.
- `role` – Port role in Q-in-Q mode, it can be either UNI port or NNI port.
  - UNI – User-to-Network Interface specifies that communication between the specified user and a specified network will occur.
  - NNI – Network-to-Network Interface specifies that communication between two specified networks will occur.
- `missdrop` – enable/disable C-VLAN based SP-VLAN assignment miss drop
- `tpid` – Allows the interoperation with devices on a public network by specifying ports.

Restrictions: Only Administrator and Operator-level users can issue this command. You must be in the Q-in-Q mode.

Example usage:

To configure port list 1-4 as NNI port, set outer TPID to 0x88a8:

```
DGS-3426:5#config qinq ports 1-4 role nni tpid 0x88a8
Command: config qinq ports 1-4 role nni tpid 0x88a8
Success.
DGS-3426:5#
```

show qinq port

Purpose: Used to display global Q-in-Q and a port’s Q-in-Q mode status.
Syntax: `show qinq port [<portlist>]`

Description: The command is used to display the Q-in-Q configuration for a port, including:
- Port role in Q-in-Q mode, enable/disable to drop the SP-VLAN assignment miss packet, and port TPID.

Parameters:
- `<portlist>` – Specifies a range of ports to be displayed.
- If no parameter is specified, the system will display all port information.

Restrictions: None.

Example usage:

To display the double tagging mode for ports 1-4 of unit 1:

```
DGS-3426:5#show qinq port 1-4
```

...
DGS–3426:4#show qinq port 1:1-1:4
Commands: show qinq ports 1:1-1:4

<table>
<thead>
<tr>
<th>Port</th>
<th>Role</th>
<th>Miss Drop</th>
<th>TPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>UNI</td>
<td>Enabled</td>
<td>0x88A8</td>
</tr>
<tr>
<td>1:2</td>
<td>UNI</td>
<td>Enabled</td>
<td>0x88A8</td>
</tr>
<tr>
<td>1:3</td>
<td>UNI</td>
<td>Enabled</td>
<td>0x88A8</td>
</tr>
<tr>
<td>1:4</td>
<td>NNI</td>
<td>Disabled</td>
<td>0x88A8</td>
</tr>
</tbody>
</table>

DGS–3426:

create vlan_translation ports

Purpose
Create a VLAN translation rule.

Syntax
create vlan_translation ports [<portlist> | all] cvid <vidlist> [add| replace] svid <vlanid 1-4094> {priority <value 0-7>}

Description
This command is used to add translation relationship between C-VLAN and SP-VLAN. On ingress at UNI port, the C-VLAN tagged packets will be translated to SP-VLAN tagged packets by adding or replacing according the configured rule. On egress at this port, the SP-VLAN tag will be recovered to C-VLAN tag or be striped.

The priority will be the priority in the SP-VLAN tag.
The configuration is only effective for an UNI port.
This setting will not be effective when Q-in-Q mode is disabled.

Note that the project has the option to implement either the Q-in-Q profile command set or the vlan translation command set. If the project is required to implement the enhanced set of classification method in addition to vlan classification, then Q-in-Q profile command is needed. Otherwise, the vlan translation command set is sufficient.

Parameters
- `<portlist>` – A range of ports on which the SP-VLAN will be translated to C-VLAN.
- `cvid` – C-VLAN ID to match.
- `add` – The action indicates to add a tag for the assigned SP-VLAN before the C-VLAN tag.
- `replace` – The action indicates to replace the C-VLAN tag with the SP VLAN svid – SP-VLAN ID.
- `priority` – The priority of the s-tag.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage
To create a VLAN translation rule which assign to add SP-VALN 100 to C-VLAN 1-10 on ports 1-4 and the priority is 4:

DGS–3426:5#create vlan_translation ports 1-4 cvid 10 add svid 100 priority 4
Command: create vlan_translation ports 1-4 cvid 10 add svid 100 priority 4

Success.

DGS–3426:5#
**delete vlan_translation ports**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete pre-created VLAN translation rules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete vlan_translation ports [&lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>The command is used to delete pre-created VLAN translation rules.</td>
</tr>
</tbody>
</table>
| Parameters | - `ports` – A range of ports which the rule will be deleted.  
- `cvid` – Specify C-VLAN range which the rules will be deleted. If no specify the parameter, all rules on the specified ports will be deleted. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

**Example usage**

To delete a VLAN translation rule on ports 1-4:

```
DGS-3426:5# delete vlan_translation ports 1-4
Command: delete vlan_translation ports 1-4
Success.
DGS-3426:5#
```

**show vlan_translation**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to show pre-created C-VLAN based SP-VLAN assignment rules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show vlan_translation {ports &lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>The command is used to show pre-created C-VLAN based SP-VLAN assignment rules.</td>
</tr>
</tbody>
</table>
| Parameters | - `ports` – A range of ports which the rules will be displayed.  
- `cvid` – Specify C-VLAN range which the rules will be displayed. If no specify the parameter, all rules on the specified ports will be displayed.  
If no parameters specified, all rules will be displayed. |
| Restrictions | None. |

**Example usage**

To show VLAN translation rules in the system:

```
DGS-3426:5# show vlan_translation
Commands: show vlan_translation

<table>
<thead>
<tr>
<th>Port</th>
<th>CVID</th>
<th>SPVID</th>
<th>Action</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>Add</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>100</td>
<td>Add</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>200</td>
<td>Add</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>100</td>
<td>Add</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>100</td>
<td>Add</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Entries: 5

DGS-3426:5#
```
The Link Layer Discovery Protocol (LLDP) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable lldp</td>
<td></td>
</tr>
<tr>
<td>disable lldp</td>
<td></td>
</tr>
<tr>
<td>config lldp</td>
<td>message_tx_interval &lt;sec 5-32768&gt;</td>
</tr>
<tr>
<td>config lldp</td>
<td>message_tx_hold_multiplier &lt;2–10&gt;</td>
</tr>
<tr>
<td>config lldp</td>
<td>tx_delay &lt;sec 1-8192&gt;</td>
</tr>
<tr>
<td>config lldp</td>
<td>reinit_delay &lt;sec 1-10&gt;</td>
</tr>
<tr>
<td>config lldp</td>
<td>notification_interval &lt;sec 5-3600&gt;</td>
</tr>
<tr>
<td>config lldp ports</td>
<td>[&lt;portlist&gt;</td>
</tr>
<tr>
<td>config lldp ports</td>
<td>dot3_tlvs [all</td>
</tr>
<tr>
<td>config lldp forward_message</td>
<td>[enable</td>
</tr>
<tr>
<td>show lldp</td>
<td></td>
</tr>
<tr>
<td>show lldp mgt_addr</td>
<td>[ipv4 &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>show lldp ports</td>
<td>[&lt;portlist&gt;]</td>
</tr>
<tr>
<td>show lldp local_ports</td>
<td>{&lt;portlist&gt;} {mode [brief</td>
</tr>
<tr>
<td>show lldp remote_ports</td>
<td>{&lt;portlist&gt;} {mode [brief</td>
</tr>
<tr>
<td>show lldp statistics</td>
<td></td>
</tr>
<tr>
<td>show lldp statistics ports</td>
<td>{&lt;portlist&gt;}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
enable lldp

**Purpose**
Used to enable LLDP operation on the Switch.

**Syntax**
```
enable lldp
```

**Description**
This command is used as a global control for the LLDP function. When this function is enabled, the switch can start to transmit LLDP packets and receive and process the LLDP packets. The specific function of each port will depend on the per port LLDP setting. For the advertisement of LLDP packets, the switch announces the information to its neighbor through ports. For the receiving of LLDP packets, the switch will learn the information from the LLDP packets advertised from the neighbor in the neighbor table. The default state for LLDP is disabled.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To enable LLDP:

```
DGS-3426:5#enable lldp
Command: enable lldp
Success.
DGS-3426:5#
```

disable lldp

**Purpose**
Used to disable LLDP operation on the Switch.

**Syntax**
```
disable lldp
```

**Description**
This command is used to stop the sending and receiving of LLDP advertisement packets on the Switch.

**Parameters**
None.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To disable LLDP:

```
DGS-3426:5#disable lldp
Command: disable lldp
Success.
DGS-3426:5#
```

cfg lldp message_tx_interval

**Purpose**
Used to change the packet transmission interval.

**Syntax**
```
cfg lldp message_tx_interval <sec 5–32768>
```

**Description**
This command is used as an interval to control how often active ports retransmit advertisements to their neighbors.

**Parameters**
```
message_tx_interval – Changes the interval between consecutive transmissions of LLDP advertisements on any given port. The range is from 5 seconds to 32768 seconds. The default setting is 30 seconds.
```

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Usage Example:**

To show the packet transmission interval:
DGS-3426:5# config lldp message_tx_interval 30
Command: config lldp message_tx_interval 30
Success.
DGS-3426:5#

**config lldp message_tx_hold_multiplier**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the message hold multiplier.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config lldp message_tx_hold_multiplier &lt;2-10&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used as a multiplier on the msgTxInterval to compute the TTL value of txTTL in an LLDPDU. The TTL will be carried in the LLDPDU packet. The lifetime will be the minimum of 65535 and (message_tx_interval * message_tx_hold_multiplier). At the partner switch, when the time-to-Live for a given advertisement expires, the advertised data is deleted from the neighbor switch’s MIB.</td>
</tr>
<tr>
<td>Parameters</td>
<td>message_hold_multiplier – The range is from 2 to 10. The default setting is 4.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Usage Example:
To change the multiplier value:

DGS-3426:5# config lldp message_tx_hold_multiplier 3
Command: config lldp message_tx_hold_multiplier 3
Success.
DGS-3426:5#

**config lldp tx_delay**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to change the minimum time (delay-interval) any LLDP port will delay advertising successive LLDP advertisements due to a change in LLDP MIB content. The tx_delay defines the minimum interval between sending of LLDP messages due to constantly change of MIB content.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config lldp tx_delay &lt;sec 1–8192&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used as an LLDP message_tx_interval (transmit interval) which must be greater than or equal to (4 x tx_delay interval).</td>
</tr>
<tr>
<td>Parameters</td>
<td>tx_delay – The range is from 1 second to 8192 seconds. The default setting is 2 seconds. NOTE: txDelay should be less than or equal to 0.25 * msgTxInterval.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To configure the delay interval:

DGS-3426:5# config lldp tx_delay 8
Command: config lldp tx_delay 8
Success.
DGS-3426:5#
### config lldp reinit_delay

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Change the minimum time of the reinitialization delay interval.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config lldp reinit_delay &lt;sec 1-10&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>An re-enabled LLDP port will wait for reinit_delay after last disable command before reinitializing.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>reinit_delay</code> – The range is from 1 second to 10 seconds. The default setting is 2 seconds.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To change the re-initialization delay interval to five seconds:

```
DGS-3426:5# config lldp reinit_delay 5
Command: config lldp reinit_delay 5
Success.
DGS-3426:5#
```

### config lldp notification _interval

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the timer of the notification interval for sending notification to configured SNMP trap receiver(s).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config lldp notification_interval &lt;sec 5–3600&gt;</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to globally change the interval between successive LLDP change notifications generated by the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>notification_interval</code> – The range is from 5 seconds to 3600 seconds. The default setting is 5 seconds.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Usage Example:

To change the notification interval to 10 seconds:

```
DGS-3426:5# config lldp notification_interval 10
Command: config lldp notification_interval 10
Success.
DGS-3426:5#
```
config lldp ports notification

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure each port for sending notification to configured SNMP trap receiver(s).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config lldp ports [&lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable or disable each port for sending changes notification to configured SNMP trap receiver(s) if an LLDP data change is detected in an advertisement received on the port from an LLDP neighbor. The definition of change includes new available information, information timeout, information update. And the changed type includes any data update /insert/remove.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;portlist&gt; – Use this parameter to define ports to be configured. all – Use this parameter to set all ports in the system. notification – Enables or disables the SNMP trap notification of LLDP data changes detected on advertisements received from neighbor devices. The default notification state is disabled.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To change the SNMP notification state of ports 1 to 5 to enable:

```
DGS-3426:5#config lldp ports 1-5 notification enable
Command: config lldp ports 1-5 notification enable
Success.
DGS-3426:5#
```

config lldp ports admin_status

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure per-port transmit and receive modes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config lldp ports [&lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to control which ports participate in LLDP traffic and whether the participating ports allow LLDP traffic in only one direction or in both directions.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;portlist&gt; – Use this parameter to define ports to be configured. all – Use this parameter to set all ports in the system. admin_status – tx_only: Configure the specified port(s) to transmit LLDP packets, but block inbound LLDP packets from neighbor devices; rx_only: Configure the specified port(s) to receive LLDP packets from neighbors, but block outbound packets to neighbors; tx_and_rx: Configure the specified port(s) to both transmit and receive LLDP packets; disable: Disable LLDP packet transmit and receive on the specified port(s). The default per port state is tx_and_rx.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure ports 1 to 5 to transmit and receive:

```
DGS-3426:5#config lldp ports 1-5 admin_status rx_and_tx
Command: config lldp ports 1-5 admin_status rx_and_tx
Success.
DGS-3426:5#
```
**config lldp ports mgt_addr**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable or disable port(s) specified for advertising indicated management address instance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>```config lldp ports [&lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to specify whether the system’s IP address needs to be advertised from the specified port. For layer 3 devices, each managed address can be individually specified. The management addresses that are added in the list will be advertised in the LLDP from the specified interface associated with each management address. The interface for that management address will be also advertised in the if-index Form.</td>
</tr>
</tbody>
</table>
| Parameters | `<portlist>` – Use this parameter to define ports to be configured.  
`all` – Use this parameter to set all ports in the system.  
`ipv4` – The IP address of IPv4.  
`ipv6` – The IP address of IPv6. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Usage Example:

To enable ports 1 to 2 to manage address entry:

DGS-3426:5#config lldp ports 1-2 mgt_addr ipv4 192.168.254.10 enable  
Command: config config lldp ports 1-2 mgt_addr ipv4 192.168.254.10 enable  
Success.  
DGS-3426:5#

**config lldp ports basic_tlvs**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure an individual port or group of ports to exclude one or more optional TLV data types from outbound LLDP advertisements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>```config lldp ports [&lt;portlist&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>An active LLDP port on the switch always includes the mandatory data in its outbound advertisements. And there are four optional data that can be configured for an individual port or group of ports to exclude one or more of these data types from outbound LLDP advertisements. The mandatory data type include four basic types of information (end of LLDPDU TLV, chassis ID TLV, port ID TLV, and Time to Live TLV). The mandatory type cannot be disabled. There are also four data types which can be optionally selected. They are <code>port_description</code>, <code>system_name</code>, <code>system_description</code>, and <code>system_capabilities</code>.</td>
</tr>
</tbody>
</table>
| Parameters | `<portlist>` – Use this parameter to define ports to be configured.  
`all` – Use this parameter to set all ports in the system.  
`port_description` – This TLV optional data type indicates that LLDP agent should transmit 'Port Description TLV on the port. The default state is disabled.  
`system_name` – This TLV optional data type indicates that LLDP agent should transmit 'System Name TLV'. The default state is disabled.  
`system_description` – This TLV optional data type indicates that LLDP agent should transmit 'System Description TLV'. The default state is disabled.  
`system_capabilities` – This TLV optional data type indicates that LLDP agent should transmit 'System Capabilities TLV'. The system capability will indicate whether the device provides repeater, bridge, or router function, and whether the provided functions are currently enabled. The default state is disabled. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Usage Example:

To configure exclude the system name TLV from the outbound LLDP advertisements for all ports:
config lldp dot1_tlv_pvid

Purpose: Used to configure an individual port or group of ports to exclude one or more of IEEE 802.1 Organizationally port VLAN ID TLV data types from outbound LLDP advertisements.

Syntax: 
```
config lldp ports [<portlist> | all] dot1_tlv_pvid [enable | disable]
```

Description: This TLV optional data type determines whether the IEEE 802.1 organizationally defined port VLAN TLV transmission is allowed on a given LLDP transmission capable port.

Parameters:
- `<portlist>` – Use this parameter to define ports to be configured.
- `all` – Use this parameter to set all ports in the system.
- `dot1_tlv_pvid` – This TLV optional data type determines whether the IEEE 802.1 organizationally defined port VLAN ID TLV transmission is allowed on a given LLDP transmission capable port. The default state is disabled.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To configure exclude the VLAN name TLV from the outbound LLDP advertisements for all ports:

```
DGS-3426:5#config lldp ports all dot1_tlv_pvid enable
Command: config lldp ports all dot1_tlv_pvid enable
Success.
DGS-3426:5#
```
**config lldp dot1_tlv_vlan_name**

**Purpose**
Used to configure an individual port or group of ports to exclude one or more of IEEE 802.1 Organizationally VLAN name TLV data types from outbound LLDP advertisements.

**Syntax**
```
config lldp ports [<portlist> | all] dot1_tlv_vlan_name [vlan [all | <vlan_name 32>] | vlanid <vlan_list>] [enable | disable]
```

**Description**
This TLV optional data type indicates whether the corresponding Local System’s VLAN name instance will be transmitted on the port. If a port is associated with multiple VLANs, those enabled VLAN IDs will be advertised.

**Parameters**
- `<portlist>` – Use this parameter to define ports to be configured.
- `all` – Use this parameter to set all ports in the system.
- `dot1_tlv_vlan_name` – This TLV optional data type indicates whether the corresponding Local System’s VLAN name instance will be transmitted on the port. If a port is associated with multiple VLANs, those enabled VLAN IDs will be advertised. The default state is disabled.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Usage Example:**
To configure exclude the VLAN name TLV from the outbound LLDP advertisements for all ports:
```
DGS-3426:5#config lldp ports all dot1_tlv_vlan_name vlanid 1-3 enable
Command: config lldp ports all dot1_tlv_protocol_vid vlanid 1-3 enable
Success.
DGS-3426:5#
```

**config lldp dot1_tlv_protocol_identity**

**Purpose**
Used to configure an individual port or group of ports to exclude one or more of IEEE 802.1 Organizationally protocol identity TLV data types from outbound LLDP advertisements.

**Syntax**
```
config lldp ports [<portlist> | all] dot1_tlv_protocol_identity [all | {eapol | lacp | gvrp | stp } (1)] [enable | disable]
```

**Description**
This TLV optional data type indicates whether the corresponding Local System’s Protocol Identity instance will be transmitted on the port. The Protocol Identity TLV provides a way for stations to advertise protocols that are important to the operation of the network. Such as Spanning Tree Protocol, the Link Aggregation Control Protocol, and numerous vendor proprietary variations are responsible for maintaining the topology and connectivity of the network. If EAPOL, GVRP, STP(including MSTP), and LACP protocol identity is enabled on this port and it is enabled to be advertised, then this protocol identity will be advertised.

**Parameters**
- `<portlist>` – Use this parameter to define ports to be configured.
- `all` – Use this parameter to set all ports in the system.
- `dot1_tlv_protocol_identity` – This TLV optional data type indicates whether the corresponding Local System’s Protocol Identity instance will be transmitted on the port. The Protocol Identity TLV provides a way for stations to advertise protocols that are important to the operation of the network. Such as Spanning Tree Protocol, the Link Aggregation Control Protocol, and numerous vendor proprietary variations are responsible for maintaining the topology and connectivity of the network. If EAPOL,
**config lldp dot1_tlv_protocol_identity**

GVRP, STP (including MSTP), and LACP protocol identity is enabled on this port and it is enabled to be advertised, then this protocol identity will be advertised. The default state is disabled.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure exclude the protocol identity TLV from the outbound LLDP advertisements for all ports:

```
DGS-3426:5# config lldp ports all dot1_tlv_protocol_identity all enable
Command: config lldp ports all dot1_tlv_protocol_identity all enable
Success.
DGS-3426:5#
```

**config lldp dot3_tlvs**

**Purpose**

Used to configure an individual port or group of ports to exclude one or more of IEEE 802.3 Organizationally Specific TLV data types from outbound LLDP advertisements.

**Syntax**

```
config lldp ports [<portlist> | all] dot3_tlvs [all | {mac_phy_configuration_status | link_aggregation | power_via_mdi | maximum_frame_size}] [enable | disable]
```

**Description**

Each Specific TLV in this extension can be enabled individually.

**Parameters**

- `<portlist>` – Use this parameter to define ports to be configured.
- `all` – Use this parameter to set all ports in the system.
- `mac_phy_configuration_status` – This TLV optional data type indicates that LLDP agent should transmit 'MAC/PHY configuration/status TLV'. This type indicates it is possible for two ends of an IEEE 802.3 link to be configured with different and/or speed settings and still establish some limited network connectivity. More precisely, the information includes whether the port support the auto-negotiation function, whether the function is enabled, the auto-negotiated advertised capability, and the operational MAU type. The default state is disabled.
- `link_aggregation` – This TLV optional data type indicates that LLDP agent should transmit 'Link Aggregation TLV'. This type indicates the current link aggregation status of IEEE 802.3 MACs. More precisely, the information should include whether the port is capable of doing link aggregation, whether the port is aggregated in a aggregated link, and the aggregated port ID. The default state is disabled.
- `power_via_mdi` – This TLV optional data type indicates that the LLDP agent should transmit 'Power via MDI TLV'. Three IEEE 802.3 PMD implementations (10BASE-T, 100BASE-TX, and 1000BASE-T) allow power to be supplied over the link for connected non-powered systems. The Power Via MDI TLV allows network management to advertise and discover the MDI power support capabilities of the sending IEEE 802.3 LAN station. The default state is disabled. Note: Not supported in the current release.
- `maximum_frame_size` – This TLV optional data type indicates that LLDP agent should transmit 'Maximum-frame-size TLV. The default state is disabled.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure exclude the MAC/PHY configuration/status TLV from the outbound LLDP advertisements for all ports:

```
DGS-3426:5# config lldp ports all dot3_tlvs mac_phy_configuration_status enable
Command: config lldp ports all dot3_tlvs mac_phy_configuration_status enable
Success.
DGS-3426:5#
```
### config lldp forward_message

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the forwarding of LLDPDU packets when LLDP is disabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config lldp forward_message [enable</td>
</tr>
<tr>
<td>Description</td>
<td>When LLDP is disabled and LLDP forward_message is enabled, the received LLDPDU packets will be forwarded. The default state is disabled.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

#### Usage Example:

To configure LLDP forward_message:

```
DGS-3426:5# config lldp forward_message enable
Command: config lldp forward_message enable
Success.
DGS-3426:5#
```

### show lldp

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command displays the switch’s general LLDP configuration status.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show lldp</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s general LLDP configuration status.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

#### Usage Example:

To display the LLDP system level configuration status:

```
DGS-3426:5# show lldp
Command: show lldp

LLDP System Information
 Chassis ID Subtype : MAC Address
 Chassis ID : 00-80-C2-11-22-00
 System Name :
 System Description: Fast Ethernet Switch
 System Capabilities: Repeater, Bridge

LLDP Configurations
 LLDP Status : Disabled
 LLDP Forward Status: Disabled
 Message Tx Interval: 30
 Message Tx Hold Multiplier : 4
 ReInit Delay : 2
 Tx Delay : 2
 Notification Interval : 5

DGS-3426:5#
```
**show lldp mgt_addr**

**Purpose**
Used to display the LLDP management address information.

**Syntax**
show lldp mgt_addr {ipv4 <ipaddr> | ipv6 <ipv6addr>}

**Description**
This command is used to display the LLDP management address information.

**Parameters**
- ipv4 – The IP address of IPv4.
- ipv6 – The IP address of IPv6.

**Restrictions**
None.

**Example usage:**
To display management address information for port 1:

```
DGS-3426:5#show lldp mgt_addr ipv4 192.168.254.10
```

```
Command: show lldp mgt_addr ipv4 192.168.254.10

Address 1
--
Subtype : IPv4
Address : 192.168.254.10
IF type : Unknown
OID : 1.3.6.1.4.1.171.10.36.1.11
Advertising Ports : 1-5,7
```

```
DGS-3426:5#
```

**show lldp ports**

**Purpose**
Display the LLDP per port configuration for advertisement options.

**Syntax**
show lldp ports {<portlist>}

**Description**
This command is used to display the LLDP per port configuration for advertisement options.

**Parameters**
- <portlist> – Use this parameter to define ports to be configured.

**Restrictions**
None.

**Example usage:**
To display the LLDP per port TLV option configuration:

```
DGS-3426:5#show lldp ports 1
```

```
Command: show lldp ports 1:1

Port ID : 1:1

Admin Status : TX_and_RX
Notification Status : Disabled
Advertised TLVs Option :
Port Description Disabled
System Name Disabled
System Description Disabled
System Capabilities Disabled
Enabled Management Address (None)
Port VLAN ID Disabled
Enabled Port_and_Protocol_VLAN_ID (None)
```

```
DGS-3426:5#
```
show lldp local_ports

Purpose: Used to display the per-port information currently available for populating outbound LLDP advertisements.

Syntax: show lldp local_ports {<portlist>} {mode [brief | normal | detailed]}

Description: This command is used to display the per-port information currently available for populating outbound LLDP advertisements.

Parameters:
- `<portlist>` – Use this parameter to define ports to be configured.
- `brief` – Display the information in brief mode.
- `normal` – Display the information in normal mode. This is the default display mode.
- `detailed` – Display the information in detailed mode.

Restrictions: None.

Usage Example:

To display outbound LLDP advertisements for port 1-2:

```
DGS-3426:5#show lldp local_ports 1-2
Command: show lldp local_ports 1-2

Port ID : 1

Port ID Subtype : Local
Port ID : 1/1
Port Description : RMON Port 1 on Unit 1
Port PVID : 1
Management Address Count : 1
PPVID Entries Count : 0
VLAN Name Entries Count : 1
Protocol Identity Entries Count : 0
MAC/PHY Configuration/Status : (See Detail)
Link Aggregation : (See Detail)
Maximum Frame Size : 1536

Port ID : 2

Port ID Subtype : Local
Port ID : 1/1
Port Description : RMON Port 1 on Unit 1
Port PVID : 1
Management Address Count : 1
```
**show lldp remote_ports**

**Purpose**
Used to display the information learned from the neighbor.

**Syntax**
```
show lldp remote_ports {<portlist>} {mode [brief | normal | detailed]}
```

**Description**
This command is used to display the information learned from the neighbor parameters. Due to a memory limitation, only 32 VLAN Name entries and 10 Management Address entries can be received.

**Parameters**
- `<portlist>` – Use this parameter to define ports to be configured.
- `mode` – Choose from three options:
  - `brief` – Display the information in brief mode.
  - `normal` – Display the information in normal mode. This is the default display mode.
  - `detailed` – Display the information in detailed mode.

**Restrictions**
None.

**Example usage:**

To display remote table in brief mode:

```
DGS-3426:5#show lldp remote_ports 1-2 mode brief
```

**show lldp statistics**

**Purpose**
Used to display the system LLDP statistics information.

**Syntax**
```
show lldp statistics
```

**Description**
This command is used to display an overview of neighbor detection activity on the Switch.

**Parameters**
None.

**Restrictions**
None.

**Example usage:**

To display global statistics information:

```
DGS-3426:5#show lldp statistics
```

---

384
**show lldp statistics ports**

**Purpose**
Used to display the ports LLDP statistics information.

**Syntax**
```
show lldp statistics ports {<portlist>}
```

**Description**
This command is used to display per-port LLDP statistics.

**Parameters**
- `<portlist>` – Use this parameter to define ports to be configured. When portlist is not specified, information for all ports will be displayed.

**Restrictions**
None.

**Usage Example:**
To display statistics information of port 1:

```
DGS-3426:5#show lldp statistics ports 1
Command: show lldp statistics ports 1
Port ID : 1
--
LLDPStatsTxPortFramesTotal : 0
LLDPStatsRxPortFramesDiscardedTotal : 0
LLDPStatsRxPortFramesErrors : 0
LLDPStatsRxPortFramesTotal : 0
LLDPStatsRxPortTLVsDiscardedTotal : 0
LLDPStatsRxPortTLVsUnrecognizedTotal : 0
LLDPStatsRxPortAgeoutsTotal : 0
DGS-3426:5#
```
sFlow is a feature that allows users to monitor network traffic running through the switch to identify network problems through packet sampling and packet counter information of the Switch. The Switch itself is the sFlow agent where packet data is retrieved and sent to an sFlow Analyzer where it can be scrutinized and utilized to resolve the problem.

The Switch can configure the settings for the sFlow Analyzer but the remote sFlow Analyzer device must have an sFlow utility running on it to retrieve and analyze the data it receives from the sFlow agent.

The Switch will take sample packets from the normal running traffic of the Switch based on a sampling interval configured by the user. Once this information has been gathered by the switch, it is packaged into a packet called an sFlow datagram, which is then sent to the sFlow Analyzer for analysis.

The sFlow commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable sflow</td>
<td></td>
</tr>
<tr>
<td>disable sflow</td>
<td></td>
</tr>
<tr>
<td>create sflow analyzer_server</td>
<td>&lt;value 1-4&gt; owner &lt;name 16&gt; {timeout [&lt;sec 1-2000000</td>
</tr>
<tr>
<td>config sflow analyzer_server</td>
<td>&lt;value 1-4&gt; {timeout [&lt;sec 1-2000000</td>
</tr>
<tr>
<td>delete sflow analyzer_server</td>
<td>&lt;value 1-4&gt;</td>
</tr>
<tr>
<td>show sflow analyzer_server</td>
<td></td>
</tr>
<tr>
<td>create sflow counter_poller ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>config sflow counter_poller ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>delete sflow counter_poller ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>show sflow counter_poller</td>
<td></td>
</tr>
<tr>
<td>create sflow flow_sampler ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>config sflow flow_sampler ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>delete sflow flow_sampler ports</td>
<td>&lt;portlist&gt;</td>
</tr>
<tr>
<td>show sflow flow_sampler</td>
<td></td>
</tr>
<tr>
<td>show sflow</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
### enable sflow

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable the sFlow function on the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable sflow</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command, along with the <code>disable sflow</code> command, is used to enable the sFlow function on the switch without altering configurations.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable the sFlow function:

```
DGS-3426:5#enable sflow
Command: enable sflow
Success.
DGS-3426:5#
```

### disable sflow

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the sFlow function on the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable sflow</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command, along with the <code>enable sflow</code> command, is used to disable the sFlow function on the switch without altering configurations.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable the sFlow:

```
DGS-3426:5#disable sflow
Command: disable sflow
Success.
DGS-3426:5#
```

### create sflow analyzer_server

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create the analyzer server for the sFlow functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`create sflow analyzer_server &lt;value 1-4&gt; owner &lt;name 16&gt; {timeout [sec 1-2000000</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create the remote sFlow Analyzer (collector) that will be used to gather and analyze sFlow Datagrams that originate from the Switch. Users must have the proper sFlow software set on the Analyzer in order to receive datagrams from the switch to be analyzed, and to analyze these datagrams. Users may specify up to four unique analyzers to receive datagrams, yet the virtual port used must be unique to each entry.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>&lt;value 1-4&gt;</code> – Enter a value from 1 to 4 to identify the sFlow server being created here. `&lt;owner &lt;name 16&gt; &gt; – Enter the owner of the entry made here. The user that added this sFlow analyzer configures this name.</td>
</tr>
<tr>
<td>Restrictions</td>
<td></td>
</tr>
</tbody>
</table>
### create sflow analyzer_server

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout &lt;sec 1-2000000&gt;</td>
<td>Used to specify the timeout for the Analyzer server. When the server times out, all sFlow samples and counter polls associated with this server will be deleted. The user may set a time between 1 and 2000000 seconds with a default setting of 400 seconds. If it is specified as infinite, the server will never timeout.</td>
</tr>
<tr>
<td>collectoraddress &lt;ipaddr&gt;</td>
<td>The IP address of the sFlow Analyzer Server. If this field is not specified, the entry will become 0.0.0.0 and therefore the entry will be inactive. Users must set this field.</td>
</tr>
<tr>
<td>collectorport &lt;udp_port_number 1-65535&gt;</td>
<td>The destination UDP port where sFlow datagrams will be sent. The default setting for this field is 6343. Only one Analyzer Server address can be set for one UDP Collector Port.</td>
</tr>
<tr>
<td>maxdatagramsize &lt;value 300-1400&gt;</td>
<td>This field will specify the maximum number of data bytes that can be packaged into a single sFlow datagram. Users may select a value between 300 and 1400 bytes with a default setting of 1400 bytes.</td>
</tr>
</tbody>
</table>

**Restrictions**

Only Administrator and Operator-level users can issue this command.

**Example usage:**

To create the sFlow server:

```bash
DGS-3426:5# create sflow analyzer_server 1 owner monitor
Command: create sflow analyzer_server 1 owner monitor
Success.
DGS-3426:5#
```

### config sflow analyzer_server

**Purpose**

Used to configure the analyzer server for the sFlow functions.

**Syntax**

```
config sflow analyzer_server <value 1-4> {timeout [sec 1-2000000 | infinite] collectoraddress <ipaddr> | collectorport <udp_port_number 1-65535> | maxdatagramsize <value 300-1400>} (1)
```

**Description**

This command is used to configure the settings for the remote sFlow Analyzer (collector) that will be used to gather and analyze sFlow Datagrams that originate from the Switch. Users must have the proper sFlow software set on the Analyzer in order to receive datagrams from the switch to be analyzed, and to analyze these datagrams. Users may specify up to four unique analyzers to receive datagrams, yet the virtual port used must be unique to each entry.

**Parameters**

- `<value 1-4>` – Enter a value from 1 to 4 to identify the sFlow server being configured here.
  - `timeout <sec 1-2000000>` – Used to specify the timeout for the Analyzer server. When the server times out, all sFlow samples and counter polls associated with this server will be deleted. The user may set a time between 1 and 2000000 seconds with a default setting of 400 seconds. If specified as infinite, the server will never timeout.
  - `collectoraddress <ipaddr>` – The IP address of the sFlow Analyzer Server. If this field is not specified, the entry will become 0.0.0.0 and therefore the entry will be inactive. Users must set this field.
  - `collectorport <udp_port_number 1-65535>` – The destination UDP port where sFlow datagrams will be sent. The default setting for this field is 6343. Only one Analyzer Server address can be set for one UDP Collector Port.
  - `maxdatagramsize <value 300-1400>` – This field will specify the maximum number of data bytes that can be packaged into a single sFlow datagram. Users may select a value between 300 to 1400 bytes with a default setting of 1400 bytes.

**Restrictions**

Only Administrator and Operator-level users can issue this command.
Example usage:

To configure the sFlow server:

```
DGS-3426:5#config sflow analyzer_server 1 collectoraddress 10.90.90.9
Command: config sflow analyzer_server 1 collectoraddress 10.90.90.9
Success.
DGS-3426:5#
```

### delete sflow analyzer_server

**Purpose**
Used to delete an sFlow analyzer server set on the switch.

**Syntax**
```
delete sflow analyzer_server <value 1-4>
```

**Description**
This command is used to delete a previously created sFlow analyzer server.

**Parameters**
- `<value 1-4>` – Enter the value identifying the analyzer to be deleted here.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete an sFlow analyzer server:

```
DGS-3426:5#delete sflow analyzer_server 1
Command: delete sflow analyzer_server 1
Success.
DGS-3426:5#
```

### show sflow analyzer_server

**Purpose**
Used to display the settings of the sFlow analyzer server set on the switch.

**Syntax**
```
show sflow analyzer_server
```

**Description**
This command is used to display the settings for a previously created sFlow analyzer server.

**Parameters**
None.

**Restrictions**
None.

Example usage:

To display the sFlow analyzer server settings:

```
DGS-3426:5#show sflow analyzer_server
Command: show sflow analyzer_server
SFlow Analyzer Server Information
--
Server ID : 1
Owner : ctsnow
Timeout : 2000
Current Countdown Time : 2000
Collector Address : 10.1.2.23
Collector Port : 6343
Max Datagram Size : 1400
Total Entries : 1
```
create sflow counter_poller ports

Purpose: Used to create the counter poller for the sFlow function of the switch.

Syntax: `create sflow counter_poller ports [portlist] | all] analyzer_server_id <value 1-4> {interval [disable | <sec 20-120>]]`

Description: This command is used to configure the settings for the Switch’s counter poller. This mechanism will take a poll of the IF counters of the Switch and package them with the other previously mentioned data into a datagram which will be sent to the sFlow Analyzer Server for examination.

Parameters:
- `<portlist>` – Use this parameter to set the ports that will be mined for sFlow information.
- `all` – Use this parameter to set all ports to be mined for sFlow information.
- `analyzer_server_id <value 1-4>` – Enter a value from 1 to 4 to identify the sFlow server where this information will be sent.
- `interval [disable | <sec 20-120>]` – Users may configure the Polling Interval here. The switch will take a poll of the IF counters every time this interval reaches 0, and this information will be included in the sFlow datagrams that will be sent to the sFlow Analyzer for examination. Choosing the disabled parameter will disable the counter polling for this entry.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To create the sFlow counter poller:

```
DGS-3426:5# create sflow counter_poller ports 1 analyzer_server_id 1 interval 20
Command: create sflow counter_poller ports 1 analyzer_server_id 1 interval 20
Success.
DGS-3426:5#
```

config sflow counter_poller ports

Purpose: Used to configure the counter poller for the sFlow function of the switch.

Syntax: `config sflow counter_poller ports [portlist] | all] {interval [disable | <sec 20-120>]]`

Description: This command is used to configure the settings for the Switch’s counter poller. This mechanism will take a poll of the IF counters of the Switch and package them with the other previously mentioned data into a datagram which will be sent to the sFlow Analyzer Server for examination.

Parameters:
- `<portlist>` – Use this parameter to set the ports that will be mined for sFlow information.
- `all` – Use this parameter to set all ports to be mined for sFlow information.
- `interval [disable | <sec 20-120>]` – Users may configure the Polling Interval here. The switch will take a poll of the IF counters every time this interval reaches 0, and this information will be included in the sFlow datagrams that will be sent to the sFlow Analyzer for examination. Choosing the disabled parameter will disable the counter polling for this entry.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the sFlow counter poller settings:
DGS-3426:5# config sflow counter_poller ports 1 interval 50
Command: create sflow counter_poller ports 1 interval 50
Success.
DGS-3426:5#

delete sflow counter_poller ports
Purpose  Used to delete the counter poller for the sFlow function of the switch.
Syntax   delete sflow counter_poller ports [<portlist> | all]
Description This command is used to delete the Switch’s counter poller.
Parameters
   <portlist> – Use this parameter to delete the ports that will be mined for sFlow information.
   all – Use this parameter to delete all ports to be mined for sFlow information.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:
To delete the sFlow counter poller settings:
DGS-3426:5# delete sflow counter_poller ports all
Command: delete sflow counter_poller ports all
Success.
DGS-3426:5#

show sflow counter_poller
Purpose  Used to display the counter poller for the sFlow function of the switch.
Syntax   show sflow counter_poller
Description This command is used to display the Switch’s counter poller.
Parameters None.
Restrictions None.

Example usage:
To show the sFlow counter poller settings:
DGS-3426:5# show sflow counter_poller
Command: show sflow counter_poller

<table>
<thead>
<tr>
<th>Port</th>
<th>Analyzer Server ID</th>
<th>Polling Interval (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Entries : 1

DGS-3426:5#
create sflow flow_sampler ports

Purpose
Used to configure the flow sampler settings for the sFlow function.

Syntax
create sflow flow_sampler ports [<portlist> | all] analyzer_server_id <value 1-4> {rate <value 0-65535> | maxheadersize <value 18-256>}

Description
This command is used to configure the Switch’s settings for taking sample packets from the network, including the sampling rate and the amount of the packet header to be extracted.

Parameters
<portlist> – Use this parameter to set the ports that will be mined for sFlow information.
all – Use this parameter to set all ports to be mined for sFlow information.
analyzer_server_id <value 1-4> – Enter a value from 1 to 4 to identify the sFlow server where this information will be sent.
rate <value 0-65535> – Users can set the rate of packet sampling here. The value entered here is to be multiplied by 256 to get the percentage of packets sampled. For example, if the user enters a figure of 20 into this field, the switch will sample one out of every 5120 packets (20 x 256 = 5120) that pass through the individual port. Users may enter a value between 1 and 65535. An entry of 0 disables the packet sampling. Since this is the default setting, users are reminded to configure a rate here or this function will not function.
maxheadersize <value 18-256> – This field will set the number of leading bytes of the sampled packet header. This sampled header will be encapsulated with the datagram to be forwarded to the Analyzer Server. The user may set a value between 18 and 256 bytes. The default setting is 128 bytes.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create the sFlow flow sampler:

DGS-3426:5# create sflow flow_sampler ports 1 analyzer_server_id 1 rate 10000 maxheadersize 128
Command: create sflow flow_sampler ports 1 analyzer_server_id 1 rate 10000 maxheadersize 128
Success.
DGS-3426:5#
config sflow flow_sampler ports

Purpose
Used to configure the flow sampler settings for the sFlow function.

Syntax
```
config sflow flow_sampler ports [<portlist> | all] {rate <value 0-65535> | maxheadersize <value 18-256>} (1)
```

Description
This command is used to configure the Switch’s settings for taking sample packets from the network, including the sampling rate and the amount of the packet header to be extracted.

Parameters
- `<portlist>` – Use this parameter to set the ports that will be mined for sFlow information.
- `all` – Use this parameter to set all ports to be mined for sFlow information.
- `rate <value 0-65535>` – Users can set the rate of packet sampling here. The value entered here is to be multiplied by 256 to get the percentage of packets sampled. For example, if the user enters a figure of 20 into this field, the switch will sample one out of every 5120 packets (20 x 256 = 5120) that pass through the individual port. Users may enter a value between 1 and 65535. An entry of 0 disables the packet sampling. Since this is the default setting, users are reminded to configure a rate here or this function will not function.
- `maxheadersize <value 18-256>` – This field will set the number of leading bytes of the sampled packet header. This sampled header will be encapsulated with the datagram to be forwarded to the Analyzer Server. The user may set a value between 18 and 256 bytes. The default setting is 128 bytes.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the sFlow flow sampler:

```
DGS-3426:5#config sflow flow_sampler ports 1 rate 20000 maxheadersize 128
Command: config sflow flow_sampler ports 1 rate 20000 maxheadersize 128
Success.
DGS-3426:5#
```

delete sflow flow_sampler ports

Purpose
Used to delete the flow sampler for the sFlow function of the switch.

Syntax
```
delete sflow flow_sampler ports [<portlist> | all]
```

Description
This command is used to delete the Switch’s flow sampler settings.

Parameters
- `<portlist>` – Use this parameter to delete the ports that will be mined for sFlow information.
- `all` – Use this parameter to delete all ports to be mined for sFlow information.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To delete the sFlow flow sampler settings:

```
DGS-3426:5#delete sflow flow sampler ports all
Command: delete sflow flow sampler ports all
Success.
DGS-3426:5#
```
**show sflow flow_sampler**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the sFlow sampler information for the sFlow function of the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><strong>show sflow flow_sampler</strong></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s sFlow flow sampler information.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

**Example usage:**

To show the sFlow flow sampler settings:

```
DGS-3426:5#show sflow flow_sampler
Command:show sflow flow_sampler

Port Analyzer Server ID Configured Rate Active Rate Max Header Size
------ ---------------------- --------------- --------------- ---------------
 1 1 10000 0 128

Total Entries : 1
```

**show sflow**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the sflow settings configured on the switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><strong>show sflow</strong></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Switch’s sFlow settings.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

**Example usage:**

To show the sFlow settings:

```
DGS-3426:5#show sflow
Command:show sflow

SFlow Version : 1.00
SFlow Address : 10.53.13.199
SFlow State : Enabled
```

DGS-3426:5#
DHCP SERVER COMMANDS

For this release, the Switch now has the capability to act as a DHCP server to devices within its locally attached network. DHCP, or Dynamic Host Configuration Protocol, allows the switch to delegate IP addresses, subnet masks, default gateways and other IP parameters to devices that request this information. This occurs when a DHCP enabled device is booted on or attached to the locally attached network. This device is known as the DHCP client and when enabled, it will emit query messages on the network before any IP parameters are set. When the DHCP server receives this request, it returns a response to the client, containing the previously mentioned IP information that the DHCP client then utilizes and sets on its local configurations.

The user can configure many DHCP related parameters that it will utilize on its locally attached network, to control and limit the IP settings of clients desiring an automatic IP configuration, such as the lease time of the allotted IP address, the range of IP addresses that will be allowed in its DHCP pool, the ability to exclude various IP addresses within the pool as not to make identical entries on its network, or to assign the IP address of an important device (such as a DNS server or the IP address of the default route) to another device on the network.

Users also have the ability to bind IP addresses within the DHCP pool to specific MAC addresses in order to keep consistent the IP addresses of devices that may be important to the upkeep of the network that require a static IP address.

The Limited IP Multicast Commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create dhcp pool</td>
<td>&lt;pool_name 12&gt;</td>
</tr>
<tr>
<td>delete dhcp pool</td>
<td>{&lt;pool_name 12&gt;</td>
</tr>
<tr>
<td>create dhcp pool manual_binding</td>
<td>&lt;pool_name 12&gt; &lt;ipaddr&gt; hardware_address &lt;macaddr&gt; {type [Ethernet</td>
</tr>
<tr>
<td>delete dhcp pool manual_binding</td>
<td>&lt;pool_name 12&gt; [&lt;ipaddr&gt;</td>
</tr>
<tr>
<td>show dhcp pool manual_binding</td>
<td>{&lt;pool_name 12&gt;}</td>
</tr>
<tr>
<td>clear dhcp_binding</td>
<td>{&lt;pool_name 12&gt;}</td>
</tr>
<tr>
<td>config dhcp ping_packets</td>
<td>&lt;number 2-10&gt;</td>
</tr>
<tr>
<td>config dhcp ping_timeout</td>
<td>&lt;millisecond 500-2000&gt;</td>
</tr>
<tr>
<td>config dhcp pool boot_file</td>
<td>&lt;pool_name 12&gt; &lt;file_name 64&gt;</td>
</tr>
<tr>
<td>config dhcp pool default_router</td>
<td>&lt;pool_name 12&gt; &lt;ipaddr&gt; {&lt;ipaddr&gt;} {&lt;ipaddr&gt;}</td>
</tr>
<tr>
<td>config dhcp pool dns_server_address</td>
<td>&lt;pool_name 12&gt; &lt;ipaddr&gt; {&lt;ipaddr&gt;} {&lt;ipaddr&gt;} {&lt;ipaddr&gt;}</td>
</tr>
<tr>
<td>config dhcp pool domain_name</td>
<td>&lt;pool_name 12&gt; &lt;domain_name 64&gt;</td>
</tr>
<tr>
<td>config dhcp pool lease</td>
<td>&lt;pool_name 12&gt; [day 0-365] [hour 0-23] [minute 0-59]</td>
</tr>
<tr>
<td>config dhcp pool netbios_name_server</td>
<td>&lt;pool_name 12&gt; &lt;ipaddr&gt; {&lt;ipaddr&gt;} {&lt;ipaddr&gt;}</td>
</tr>
<tr>
<td>config dhcp pool netbios_node_type</td>
<td>&lt;pool_name 12&gt; [broadcast</td>
</tr>
<tr>
<td>config dhcp pool network_addr</td>
<td>&lt;pool_name 12&gt; &lt;network_address&gt;</td>
</tr>
<tr>
<td>config dhcp pool next_server</td>
<td>&lt;pool_name 12&gt; &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>enable dhcp_server</td>
<td></td>
</tr>
<tr>
<td>disable dhcp_server</td>
<td></td>
</tr>
<tr>
<td>show dhcp_server</td>
<td></td>
</tr>
<tr>
<td>create dhcp excluded_address begin_address</td>
<td>&lt;ipaddr&gt; end_address &lt;ipaddr&gt;</td>
</tr>
<tr>
<td>delete dhcp excluded_address</td>
<td>[begin_address &lt;ipaddr&gt; end_address &lt;ipaddr&gt;</td>
</tr>
</tbody>
</table>
Command Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dhcp excluded_address</td>
<td></td>
</tr>
<tr>
<td>show dhcp pool</td>
<td>{ &lt;pool_name 12&gt;}</td>
</tr>
</tbody>
</table>

Each command is listed in detail in the following sections.

create dhcp pool

Purpose: Used to create a DHCP pool.
Syntax: `create dhcp pool <pool_name 12>`
Description: This command is used to create a DHCP pool for the DHCP server. Once created, this pool may be modified for accepting DHCP clients into this pool.
Parameters: `<pool_name 12>` – Enter an name of up to 12 alphanumeric characters to identify the pool to be created with this command.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To create the DHCP pool Floor2:

```
DGS-3426:5# create dhcp pool Floor2
Command:create dhcp pool Floor2
Success.
DGS-3426:5#
```

delete dhcp pool

Purpose: Used to delete a DHCP pool.
Syntax: `delete dhcp pool {<pool_name 12> | all}`
Description: This command is used to delete a DHCP pool that was created with the `create dhcp pool` command.
Parameters: `<pool_name 12>` – Enter an name of up to 12 alphanumeric characters to identify the pool to be deleted with this command.
`all` – Enter this command to delete all created DHCP pool.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:
To delete the DHCP pool Floor2:

```
DGS-3426:5# delete dhcp pool Floor2
Command:delete dhcp pool Floor2
Success.
DGS-3426:5#
```
create dhcp pool manual_binding

Purpose
Used to create a DHCP pool manual binding entry.

Syntax
create dhcp pool manual_binding <pool_name 12> <ipaddr> hardware_address <macaddr> {type [Ethernet | IEEE802]}

Description
This command is used to create a DHCP manual pool binding entry for a previously created pool. When a MAC address is entered in this command, it will be bound to an IP address from the given pool either by the user, or automatically by the Switch.

Parameters
- <pool_name 12> – Enter the name of the previously created pool that will contain the manual binding entry.
- <ipaddr> – Enter the IP address to be statically bound to a device within the local network that will be specified by entering the Hardware Address in the following field.
  - hardware_address <macaddr> – Enter the MAC address of the device to be statically bound to the IP address entered in the previous field.
  - type [Ethernet | IEEE802] – This field is used to specify the type of connection for which this manually bound entry will be set. Ethernet will denote that the manually bound device is connected directly to the Switch, while the IEEE802 denotes that the manually bound device is outside the local network of the Switch.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To create a manual binding DHCP entry:
```
DGS-3426:5# create dhcp pool manual_binding engineering 10.10.10.1 hardware_address 02.02.02.02.02.02 type Ethernet
Command: create dhcp pool manual_binding engineering 10.10.10.1 hardware_address 02.02.02.02.02.02 type Ethernet
Success.
DGS-3426:5#
```
show dhcp pool manual_binding

**Purpose**
Used to display the manual binding settings for a DHCP pool.

**Syntax**
`show dhcp pool manual_binding {<pool_name 12>}

**Description**
This command is used to display the manual binding entries for the selected DHCP pool.

**Parameters**
- `<pool_name 12>` – Enter the name of the DHCP pool for which to view manual binding entries.
  Entering this command without the pool name will display all manual binding entries of the DHCP server.

**Restrictions**
None.

**Example usage:**
To display the manual binding entries of the DHCP pool accounting:

```
DGS-3426:5#show dhcp pool manual_binding accounting
Command: show dhcp pool manual_binding accounting

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>IP Address</th>
<th>Hardware Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting</td>
<td>192.168.0.1</td>
<td>01-22-b7-35-ce-99</td>
<td>Ethernet</td>
</tr>
<tr>
<td>accounting</td>
<td>192.168.0.2</td>
<td>0a-52-f7-34-ce-88</td>
<td>Ethernet</td>
</tr>
</tbody>
</table>

Total Entries : 2

DGS-3426:5#
```

show dhcp_binding

**Purpose**
Used to show the DHCP binding information.

**Syntax**
`show dhcp_binding {<pool_name 12>}

**Description**
This command is used to display the DHCP binding information by created pool. Entering the command without the pool name will display all information regarding DHCP binding on the switch.

**Parameters**
- `<pool_name 12>` – Enter the name of the DHCP pool for which to view manual binding information.

**Restrictions**
None.

**Example usage:**
To display the DHCP binding information on the Switch:

```
DGS-3426:5#show dhcp_binding
Command: show dhcp_binding

DHCP Binding Table

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>IP Address</th>
<th>Hardware Address</th>
<th>Type</th>
<th>Status</th>
<th>Life Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engineering</td>
<td>192.168.0.1</td>
<td>01-22-b7-35-ce-99</td>
<td>Ethernet</td>
<td>Manual</td>
<td>864000</td>
</tr>
</tbody>
</table>

Total Entries : 1

DGS-3426:5#
```
### clear dhcp_binding

**Purpose**: Used to clear the DHCP binding information.

**Syntax**: `clear dhcp_binding <pool_name 12>`

**Description**: This command is used to clear the DHCP binding settings for a particular created DHCP pool.

**Parameters**
- `<pool_name 12>` – Enter the name of the DHCP pool for which to clear the manual binding information.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

**Example usage**:

To display the DHCP binding information on the Switch:

```
DGS-3426:5#clear dhcp_binding
Command: clear dhcp_binding
Success.
DGS-3426:5#
```

### config dhcp ping_packets

**Purpose**: Used to set the number of Ping packets that will be sent out to find if an IP address is available.

**Syntax**: `config dhcp ping_packets <number 2-10>`

**Description**: This command is used to set the number of Ping packets that will be sent out to find if an IP address is available to be allocated as a valid DHCP IP address.

**Parameters**
- `<number 2-10>` – Enter a number between 2 and 10 to denote the number of Ping packets that the Switch will send out on the network containing the IP address to be allotted. If the Ping request is not returned, the IP address is considered unique to the local network and then allotted to the requesting client. The default setting is 2 packets.

**Restrictions**: Only Administrator and Operator-level users can issue this command.

**Example usage**:

To configure the number of Ping packets to be used for DHCP:

```
DGS-3426:5#config dhcp ping_packets 2
Command: config dhcp ping_packets 2
Success.
DGS-3426:5#
```

### config dhcp ping_timeout

**Purpose**: Used to set the time the Switch will wait before timing out a Ping packet.

**Syntax**: `config dhcp ping_timeout <millisecond 500-2000>`

**Description**: This command is used set the time the Switch will wait before timing out a Ping packet. If no answer is received, the IP address is considered unused and may be allocated to a requesting client.

**Parameters**
- `<millisecond 500-2000>` – The user may set a time between 500 and 2000 milliseconds that the Switch will wait before timing out a Ping packet. The default setting is 500 milliseconds.

**Restrictions**: Only Administrator and Operator-level users can issue this command.
Example usage:

To configure the Ping timeout:

```
DGS-3426:5# config dhcp ping_timeout 500
Command: config dhcp ping_timeout 500
Success.
DGS-3426:5#
```

### config dhcp pool boot_file

#### Purpose
Used to specify the Boot File that will be used as the boot image of the DHCP client.

#### Syntax
```
config dhcp pool boot_file <pool_name 12> <file_name 64>
```

#### Description
This command is used to specify the Boot File that will be used as the boot image of the DHCP client. This image is usually the operating system that the client uses to load its IP parameters.

#### Parameters
- `<pool_name 12>` – Enter the previously created pool name from which the boot file will be set.
- `<file_name 64>` – Enter the name of the boot file that will be used for DHCP clients.

#### Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To set the boot file:

```
DGS-3426:5# config dhcp pool boot_file accounting boot.had
Command: config dhcp pool boot_file accounting boot.had
Success.
DGS-3426:5#
```

### config dhcp pool default_router

#### Purpose
Used to configure the default router for the DHCP client.

#### Syntax
```
config dhcp pool default_router <pool_name 12> <ipaddr> {<ipaddr>} {<ipaddr>}
```

#### Description
This command is used to configure the default router for DHCP clients requesting DHCP information for the switch. Users may add up to three IP addresses to identify the router, but must specify at least one.

#### Parameters
- `<pool_name 12>` – Enter the previously created pool name for which to add a default router.
- `<ipaddr>` – Enter the IP address for the default router for this pool. Users may specify up to three default routers but users must add at least one.

#### Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the default router:

```
DGS-3426:5# config dhcp pool default_router accounting 10.245.32.1
Command: config dhcp pool default_router accounting 10.245.32.1
Success.
DGS-3426:5#
```
config dhcp pool dns_server_address

**Purpose**
Used to configure the IP addresses of DNS servers for a specific DHCP pool.

**Syntax**
```
config dhcp pool dns_server_address <pool_name 12> <ipaddr> {<ipaddr>}
```

**Description**
This command is used to configure the DNS server IP addresses for a specific DHCP pool for the switch. The DNS Server correlates IP addresses to host names when queried. Users may add up to three DNS Server addresses.

**Parameters**
- `<pool_name 12>` – Enter the previously created pool name for which to add a DNS address.
- `<ipaddr>` – Enter the IP address for the DNS server for this pool. Users may specify up to three DNS servers.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure the DNS server address for a DHCP pool:

```
DGS-3426:5#config dhcp pool dns_server_address accounting 10.245.32.1
Command: config dhcp pool dns_server_address accounting 10.245.32.1
Success.
DGS-3426:5#
```

config dhcp pool domain_name

**Purpose**
Used to configure the domain name for the DHCP pool of the switch.

**Syntax**
```
config dhcp pool domain_name <pool_name 12> <domain_name 64>
```

**Description**
This command is used to configure the domain name for the DHCP pool of the switch. This domain name represents a general group of networks that collectively make up the domain.

**Parameters**
- `<pool_name 12>` – Enter the previously created pool name for which to add a default router.
- `<domain_name 64>` – The Domain Name may be an alphanumeric string of up to 64 characters.

**Restrictions**
Only Administrator and Operator-level users can issue this command.

**Example usage:**

To configure the domain name for a DHCP pool:

```
DGS-3426:5#config dhcp pool domain_name accounting d_link.com
Command: config dhcp pool domain_name accounting d_link.com
Success.
DGS-3426:5#
```
config dhcp pool lease

Purpose
Used to configure the lease time of DHCP clients within a DHCP pool.

Syntax
config dhcp pool lease <pool_name 12> [/day 0-365 <hour 0-23> <minute 0-59> | infinite]

Description
This command is used to specify the lease time for the DHCP client. This time represents the amount of time that the allotted address is valid on the local network.

Parameters
<pool_name 12> – Enter the previously created pool name for which to set the lease time for accepted DHCP clients.
day 0-365 – Enter the amount of days for the lease. The default setting is one day.
hour 0-23 – Enter the number of hours for the lease.
minute 0-59 – Enter the number of minutes for the lease.
infinite – Enter this parameter to set the allotted IP address to never be timed out of its lease.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the lease time for the DHCP pool:

DGS-3426:5# config dhcp pool lease accounting infinite
Command: config dhcp pool lease accounting infinite
Success.
DGS-3426:5#

cfg dhcp pool netbios_name_server

Purpose
Used to configure the IP address(es) for the NetBIOS name server.

Syntax
config dhcp pool netbios_name_server <pool_name 12> <ipaddr> {<ipaddr>}

Description
This command is used to enter the IP address of a Net BIOS Name Server that will be available to a Microsoft DHCP Client. This Net BIOS Name Server is actually a WINS (Windows Internet Naming Service) Server that allows Microsoft DHCP clients to correlate host names to IP addresses within a general grouping of networks. The user may establish up to three Net BIOS Name Servers.

Parameters
<pool_name 12> – Enter the previously created pool name for which to set the Net BIOS name server for DHCP clients.
<ipaddr> – Enter the IP address for the Net BIOS name server for this pool. Users may specify up to three Net BIOS name servers.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure the Net BIOS name server for the DHCP pool:

DGS-3426:5# config dhcp pool netbios_name_server accounting 10.98.254.2
Command: config dhcp pool netbios_name_server accounting 10.98.254.2
Success.
DGS-3426:5#
### config dhcp pool netbios_node_type

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to set the Net BIOS node type for the DHCP server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config dhcp pool netbios_node_type &lt;pool_name 12&gt; [broadcast</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to allow users to set the type of node server for the previously configured Net BIOS Name server. The user has four choices for node types which are Broadcast, Peer to Peer, Mixed and Hybrid.</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;pool_name 12&gt; – Enter the previously created pool name for which to set the Net BIOS node type for DHCP clients. [broadcast</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

#### Example usage:

To configure the Net BIOS node type for the DHCP pool:

```
DGS-3426:5#config dhcp pool netbios_node_type accounting hybrid
Command: config dhcp pool netbios_node_type accounting hybrid
Success.
```

### config dhcp pool network_addr

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the network address and corresponding subnet mask for the DHCP pool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config dhcp pool network_addr &lt;pool_name 12&gt; &lt;network_address&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enter the IP address pool to be assigned to requesting DHCP Clients. This address will not be chosen but the first 3 sets of numbers in the IP address will be used for the IP address of requesting DHCP Clients. (ex. If this entry is given the IP address 10.10.10.2, then assigned addresses to DHCP Clients will resemble 10.10.10.x, where x is a number between 1 and 255 but does not include the assigned 10.10.10.2)</td>
</tr>
<tr>
<td>Parameters</td>
<td>&lt;pool_name 12&gt; – Enter the previously created pool name for which to set the network address. &lt;network_address&gt; – IP address and netmask that is the address of this DHCP pool. The address and mask information can be specified using the traditional format (for example, 10.1.2.3/255.0.0.0 or in CIDR format, 10.1.2.3/8).</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

#### Example usage:

To configure the network address for the DHCP pool:

```
DGS-3426:5#config dhcp pool network_addr accounting 10.1.1.1/8
Command: config dhcp pool network_addr accounting 10.1.1.1/8
Success.
```

---

xStack® DGS-3400 Series Layer 2 Gigabit Managed Switch CLI Manual
**config dhcp pool next_server**

Purpose	Used to configure the IP address of the server that has the boot file for the DHCP pool.
Syntax	`config dhcp pool next_server <pool_name 12> <ipaddr>`
Description	This command is used to configure the IP address of the server that has the boot file for the DHCP pool.
Parameters	- `<pool_name 12>` – Enter the previously created pool name for which to set the next server.
	- `<ipaddr>` – Enter the IP address of the next server which has the boot file.
Restrictions	Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the IP address of the next server:

```
DGS-3426:5#config dhcp pool next_server accounting 10.99.88.77
Command: config dhcp pool next_server accounting 10.99.88.77
Success.
DGS-3426:5#
```

**enable dhcp_server**

Purpose	Used to enable the DHCP function on the switch.
Syntax	`enable dhcp_server`
Description	This command, along with the `disable dhcp_server`, will enable and disable the DHCP server function without affecting configurations.
Parameters	None.
Restrictions	Only Administrator and Operator-level users can issue this command.

Example usage:

To enable DHCP server:

```
DGS-3426:5#enable dhcp_server
Command: enable dhcp_server
Success.
DGS-3426:5#
```

**disable dhcp_server**

Purpose	Used to disable the DHCP function on the switch.
Syntax	`disable dhcp_server`
Description	This command, along with the `enable dhcp_server`, will enable and disable the DHCP server function without affecting configurations.
Parameters	None.
Restrictions	Only Administrator and Operator-level users can issue this command.

Example usage:

To disable the DHCP server:
DGS-3426:5#disable dhcp_server
Command: disable dhcp_server
Success.
DGS-3426:5#

### show dhcp_server

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the DHCP server settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show dhcp_server</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the DHCP server settings for its Global state, Ping packet count and Ping timeout.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display the DHCP server settings:

DGS-3426:5#show dhcp_server
Command: show dhcp_server

DHCP Server Global State: Disable
Ping Packet Number : 2
Ping Timeout : 500 ms

DGS-3426:5#

### create dhcp excluded_address begin_address

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure IP addresses that will be excluded from the DHCP Server pool of addresses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>create dhcp excluded_address begin_address [ipaddr] end_address [ipaddr]</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to set an IP address, or a range of IP addresses that are NOT to be included in the range of IP addresses that the Switch will allot to clients requesting DHCP service.</td>
</tr>
</tbody>
</table>
| Parameters       | `begin_address <ipaddr>` – Enter the beginning IP address of the range of IP addresses to be excluded from the DHCP pool.

`end_address <ipaddr>` – Enter the ending IP address of the range of IP addresses to be excluded from the DHCP pool.

| Restrictions     | Only Administrator and Operator-level users can issue this command. |

Example usage:
To configure IP addresses that will be excluded:

DGS-3426:5#create dhcp excluded_address begin_address 10.10.10.1 end_address 10.10.10.10
Command: create dhcp excluded_address begin_address 10.10.10.1 end_address 10.10.10.10
Success.
DGS-3426:5#
delete dhcp excluded_address

Purpose
Used to delete IP addresses that have been configured as excluded from the DHCP Server pool of addresses.

Syntax
delete dhcp excluded_address [begin_address <ipaddr> end_address <ipaddr> | all]

Description
This command is used to delete a previously set IP address, or a range of IP addresses that are NOT to be included in the range of IP addresses that the Switch will allot to clients requesting DHCP service.

Parameters
begin_address <ipaddr> – Enter the beginning IP address of the range of IP addresses to be deleted from the excluded IP address list, from the DHCP pool.
end_address <ipaddr> – Enter the ending IP address of the range of IP addresses to be deleted from the excluded IP address list, from the DHCP pool.
all – Enter this command to delete all excluded IP addresses, from the DHCP pool.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To delete excluded IP addresses:

DGS-3426:5#delete dhcp excluded_address begin_address 10.10.10.1 end_address 10.10.10.10
Command: delete dhcp excluded_address begin_address 10.10.10.1 end_address 10.10.10.10
Success.
DGS-3426:5#

show dhcp excluded_address

Purpose
Used to display the excluded IP addresses of the DHCP server function.

Syntax
show dhcp excluded_address

Description
This command is used to display the excluded IP addresses of the DHCP server function.

Parameters
None.

Restrictions
None.

Example usage:
To display the excluded IP addresses:

DGS-3426:5#show dhcp excluded_address
Command: show dhcp excluded_address

<table>
<thead>
<tr>
<th>Index</th>
<th>Begin Address</th>
<th>End Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.0.1</td>
<td>192.168.0.100</td>
</tr>
<tr>
<td>2</td>
<td>10.10.10.10</td>
<td>10.10.10.10</td>
</tr>
</tbody>
</table>

Total Entries : 2

DGS-3426:5#
### show dhcp pool

**Purpose**: Used to show the DHCP pool information.

**Syntax**: `show dhcp pool {<pool_name 12>}`

**Description**: This command is used to display the DHCP pool information. Entering the command without the pool name will display all DHCP pool information on the switch.

**Parameters**:
- `<pool_name 12>` – Enter the name of the DHCP pool for which to view DHCP pool information.

**Restrictions**: None.

**Example usage**:

To display the DHCP pool information:

```
DGS-3426:5#show dhcp pool Floor2
Command: show dhcp pool Floor2

<table>
<thead>
<tr>
<th>Pool Name</th>
<th>:Floor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Address</td>
<td>:10.0.0.0/8</td>
</tr>
<tr>
<td>Domain Name</td>
<td>:</td>
</tr>
<tr>
<td>DNS Server Address</td>
<td>:0.0.0.0</td>
</tr>
<tr>
<td>NetBIOS Name Server</td>
<td>:0.0.0.0</td>
</tr>
<tr>
<td>NetBIOS Node Type</td>
<td>:Broadcast</td>
</tr>
<tr>
<td>Default Router :0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Pool Lease :1 Days, 0 Hours, 0 Minutes</td>
<td></td>
</tr>
<tr>
<td>Boot File :</td>
<td></td>
</tr>
<tr>
<td>Next Server :0.0.0.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Pool Entry: 1
```

DGS-3426:5#
DHCP SERVER SCREENING COMMANDS

The DHCP Server Screening Commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

The DHCP Server Screening commands allow you not only to restrict all DHCP server packets but also to receive any specified DHCP server packets by any specified DHCP client, it is useful when one or more than one DHCP servers are present on the network and both provide DHCP services to different distinct groups of clients. Enabling DHCP server screening for the first time will create both an access profile and access rule per port, following this other access rules can be created. These rules are used to block all DHCP server packets. Similarly, the addition of a permit DHCP entry will create one access profile and one access rule the first time the DHCP client MAC address is the client MAC address, and the source IP address is the same as the DHCP server’s IP address (UDP port number 67). These rules are used to permit the DHCP server packets with specific fields, which the user configures.

When the DHCP server screening function is enabled, all DHCP server packets will be filtered from a specific port. Also, you are allowed to create entries for specific port-based server IP address and client MAC address binding entries. Be aware that the DHCP server screening function must be enabled first. Once all settings are complete, all DHCP server packets will be filtered from a specific port except those that meet the server IP address and client MAC address binding.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| config filter dhcp_server                    | [add permit server_ip <ipaddr> {client_mac <macaddr>} ports [<portlist>=all] | delete permit server_ip <ipaddr> {client_mac <macaddr>} ports [<portlist>=all] | state [enable|disable]
| show filter dhcp_server                      |                                                                            | | |
| config filter dhcp_server trap_log           | [enable | disable]                                                             |
| config filter dhcp_server illegal_server_log_suppress_duration | [ 1min | 5min | 30min ]                                                            |

Each command is listed in detail in the following sections.

**config filter dhcp_server**

**Purpose**
DHCP server packets except those that have been IP/client MAC bound will be filtered. This command is used to configure the state of the function for filtering of DHCP server packet and to add/delete the DHCP server/client binding entry.

**Syntax**

```
config filter dhcp_server [add permit server_ip <ipaddr> {client_mac <macaddr>} ports [<portlist>=all] | delete permit server_ip <ipaddr> {client_mac <macaddr>} ports [<portlist>=all] | state [enable|disable]]
```

**Description**

This command has two purposes: to filter all DHCP server packets on the specified port(s) and to allow some DHCP server packets to be forwarded if they are on the predefined server IP address/MAC address binding list. Thus the DHCP server can be restricted to service a specified DHCP client. This is useful when there are two or more DHCP servers present on a network.

**Parameters**

- `ipaddr` – The IP address of the DHCP server to be filtered.
- `macaddr` – The MAC address of the DHCP client.
- `state` – To Enable/disable the filter DHCP server state.
- `portlist` – The port list of filter DHCP server.

**Restrictions**

Only Administrator and Operator-level users can issue this command.

Enabling the DHCP filter will create one access profile and create one access rule per port (UDP port 67).

Addition of a DHCP filter permit entry will create one access profile and create one access rule (DA = client MAC address, SA = source IP address and UDP port 67).
Example usage:
To add an entry from the DHCP server/client filter list in the switch’s database:

```
DGS-3426:5#config filter dhcp_server add permit server_ip 10.1.1.1 client_mac 00-00-00-00-01-01 ports 1:1-1:3
Command: config filter dhcp_server add permit server_ip 10.1.1.1 client_mac 00-00-00-00-01-01 ports 1:1-1:3
Success.
```

To configure the DHCP server screening state:

```
DGS-3426:5#config filter dhcp_server ports 1:1-1:3 state enable
Command: config filter dhcp_server ports 1:1-1:3 state enable
Success.
```

```
show filter dhcp_server
Purpose Used to display current DHCP server/client filter list created on the switch.
Syntax Show filter dhcp_server
Description This command is used to display DHCP server/client filter list created on the switch. The log ceasing unauthorized duration and the log/trap state.
Parameters None.
Restrictions None.
Example usage:
To display the DHCP server/client filter list created on the switch the log ceasing unauthorized duration and the log/trap state:

```
DGS-3426:5#show filter dhcp_server
Command: show filter dhcp_server
Filter DHCP Server Trap_Log State: Disabled
  Enabled Ports: 1:1-1:3
Illegal Server Log Suppress Duration: 5 minutes
Filter DHCP Server/Client Table
  Server IP Address  Client MAC Address  Port
  10.1.1.1  00-00-00-00-00-01  1:1-1:3
Total Entries: 1
```
```
**config filter dhcp_server trap_log**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the trap and log related to the DHCP server screening.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config filter dhcp_server trap_log [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable or disable trap/log related to DHCP server filter.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable log and trap for the DHCP server screening event:

```
DGS-3426:5#config filter dhcp_server trap_log disable
Command: config filter dhcp_server trap_log disable
Success.
DGS-3426:5#
```

**config filter dhcp_server illegal_server_log_suppress_duration**

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This function is used to configure the illegal server log suppress duration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config filter dhcp_server illegal_server_log_suppress_duration [ 1min</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to filter any illegal DHCP server packets. The DHCP server who sends the illegal packets will be logged. This command is used to suppress the logging of DHCP servers who continue to send illegal DHCP packets. The same illegal DHCP server IP address that is detected will be logged only once regardless of how many illegal packets are sent.</td>
</tr>
<tr>
<td>Parameters</td>
<td>illegal_server_log_suppress_duration – The log can be suppressed by 1 minute, 5 minutes or 30 minutes. The default value is 5 minutes.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the illegal server log suppress duration for 30 minutes:

```
DGS-3426:5#config filter dhcp_server illegal_server_log_suppress_duration 30min
Command: config filter dhcp_server illegal_server_log_suppress_duration 30min
Success.
DGS-3627:5#
```
RSPAN COMMANDS

The Remote Switched Port Analyzer (RSPAN) function commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable rspan</td>
<td></td>
</tr>
<tr>
<td>disable rspan</td>
<td></td>
</tr>
<tr>
<td>create rspan vlan</td>
<td>[vlan_name &lt;vlan_name&gt;</td>
</tr>
<tr>
<td>delete rspan vlan</td>
<td>[vlan_name &lt;vlan_name&gt;</td>
</tr>
<tr>
<td>config rspan vlan</td>
<td>[vlan_name &lt;vlan_name&gt;</td>
</tr>
<tr>
<td>config rspan vlan</td>
<td>[vlan_name &lt;vlan_name&gt;</td>
</tr>
<tr>
<td>show rspan</td>
<td>( [vlan_name &lt;vlan_name&gt;</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

enable rspan

Purpose: Used to enable RSPAN
Syntax: enable rspan
Description: This command is used to control the RSPAN function.

The purpose of the RSPAN function is to mirror the packets to the remote switch. The packet travels from the source switch through the intermediate switch, where the monitored packet is received, then to the switch where the sniffer is attached. To make the RSPAN work, for the source switch, the RSPAN VLAN source setting must be configured. For the intermediate and the last switch, the RSPAN VLAN redirect setting must be configured.

Note: RSPAN VLAN mirroring only works when RSPAN is enabled, once RSPAN VLAN has been configured with source ports, and the mirror is enabled. RSPAN redirect function will work when RSPAN is enabled and at least one RSPAN VLAN has been configured with redirect ports.

Parameters: None.
Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To enable RSPAN:

DGS-3426:5#enable rspan
Command: enable rspan
Success.

DGS-3426:5#
### disable rspan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable RSPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><strong>disable rspan</strong></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the RSPAN function.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable RSPAN:

```
DGS-3426:5# disable rspan
Command: disable rspan
Success.
DGS-3426:5#
```  

### create rspan vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create an RSPAN vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>**create rspan vlan [vlan_name &lt;vlan_name&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create the RSPAN VLAN. Up to 16 RSPAN VLANs can be created.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>vlan_name</code> – Creates the RSPAN VLAN by VLAN name.</td>
</tr>
<tr>
<td></td>
<td><code>vlan_id</code> – Creates the RSPAN VLAN by VLAN ID.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To create an RSPAN VLAN by VLAN name:

```
DGS-3426:5# create rspan vlan vlan_name v2
Command: create rspan vlan vlan_name v2
Success.
DGS-3426:5#
```  

To create an RSPAN VLAN by VLAN ID:

```
DGS-3426:5# create rspan vlan vlan_id 6
Command: create rspan vlan vlan_id 6
Success.
DGS-3426:5#
```
### delete rspan vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete an RSPAN VLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete rspan vlan [vlan_name &lt;vlan_name&gt;</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete an RSPAN VLAN.</td>
</tr>
</tbody>
</table>
| Parameters    | `vlan_name` – Deletes the RSPAN VLAN by VLAN name.  
`vlan_id` – Deletes the RSPAN VLAN by VLAN ID. |
| Restrictions  | Only Administrator and Operator-level users can issue this command. |

**Example usage:**

To delete an RSPAN VLAN by VLAN name:

```
DGS-3426:5#delete rspan vlan vlan_name v2
Command: delete rspan vlan vlan_name v2
Success.
DGS-3426:5#
```

To delete an RSPAN VLAN by VLAN ID:

```
DGS-3426:5#delete rspan vlan vlan_id 6
Command: delete rspan vlan vlan_id 6
Success.
DGS-3426:5#
```

### config rspan vlan source

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used by the source switch to configure the source settings for the RSPAN VLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config rspan vlan [vlan_name &lt;vlan_name&gt;</td>
</tr>
</tbody>
</table>
| Description   | This command is used to configure the source setting for the RSPAN VLAN on the source switch. The output port of the RSPAN mirrored packet will use the same destination port as defined by the mirror command.  
**Note:** That if RSPAN is enabled, the packets mirrored to the destination port are always added with RSPAN VLAN tag. If the mirror is enabled but RSPAN is disabled, the packets mirrored to the destination port may be in tagged or untagged form.  
**Note:** That only one RSPAN VLAN can be configured with source settings. |
| Parameters    | `vlan_name` – Specifies the RSPAN VLAN by VLAN name.  
`vlan_id` – Specifies the RSPAN VLAN by VLAN ID.  
`source` – When ports are not specified by this command, the source of RSPAN can come from the source specified by the mirror command or the flow-based source specified by ACL.  
`add` – Add source ports.  
`delete` – Delete source ports.  
`ports <portlist>` – Specifies the source portlist to add or delete from the RSPAN source.  
`rx` – Only monitors ingress packets.  
`tx` – Only monitors egress packets.  
`both` – Monitors both ingress and egress packets. |
| Restrictions  | Only Administrator and Operator-level users can issue this command. |
NOTE: If the ACL function has been used to implement per flow RSPAN, the source needs to be set otherwise the per port RSPAN will not work.

Example usage:

To config RSPAN VLAN by VLAN name:

```
DGS-3426:5#config rspan vlan vlan_name vlan2 source add ports 2-5 rx
Command: config rspan vlan vlan_name vlan2 source add ports 1:2-1:5 rx
Success.
DGS-3426:5#
```

To config RSPAN VLAN by VLAN ID:

```
DGS-3426:5#config rspan vlan vlan_id 6 source add ports 2-5 rx
Command: config rspan vlan vlan_id 6 source add ports 1:2-1:5 rx
Success.
DGS-3426:5#
```

To config RSPAN VLAN:

```
DGS-3426:5#config rspan vlan vlan_id 2 source
Command: config rspan vlan vlan_id 2 source
Success.
DGS-3426:5#
```

```
config rspan vlan redirect
Purpose Used by the intermediate or the last switch to configure the output for the RSPAN mirrored packet.
Syntax config rspan vlan [vlan_name <vlan_name>| vlan_id <vlanid 1-4094>] redirect [add | delete] port <port>
Description This command is used by the intermediate or the last switch to configure the output port of the RSPAN VLAN packets. The redirect command makes sure that the RSPAN VLAN packets can be egressed to the redirect port. In addition to this redirect command, the VLAN setting must be correctly configured to make the RSPAN VLAN work correctly. That is, for the intermediate switch, the redirect port must be a tagged member port of the RSPAN VLAN. For the last switch, the redirect port must be either a tagged member port or untagged member port of the RSPAN VLAN based on users’ requirement. If untagged membership is specified, the RSPAN VLAN tag will be removed. The redirect function will only work when RSPAN is enabled. Multiple RSPAN VLANs can be configured with redirect settings at the same time. An RSPAN VLAN can be configured with source settings and redirect settings at the same time.
Parameters vlan_name – Specifies the RSPAN VLAN by VLAN name.
vlan_id – Specifies the RSPAN VLAN by VLAN ID.
redirect – Specifies the output port for the RSPAN VLAN packets.
Restrictions Only Administrator and Operator-level users can issue this command.
```

Example usage:

```
To configure RSPAN redirect:

```
DGS-3426:5#config rspan vlan vlan_id 2 redirect add port 1:18
Command: config rspan vlan vlan_id 2 redirect add port 1:18
DGS-3426:5#
```

show rspan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used by display RSPAN configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show rspan {vlan_name <vlan_name></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display RSPAN configuration.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>vlan_name</code> – Specifies the RSPAN VLAN by VLAN name.</td>
</tr>
<tr>
<td></td>
<td><code>vlan_id</code> – Specifies the RSPAN VLAN by VLAN ID.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display RSPAN:

```
DGS-3426:5#show rspan
Command: show rspan

RSPAN   : Enabled

RSPAN VLAN ID  : 2
--------------------
Source Port
RX       : 1:2-1:5
TX       :
Redirect Port : 1:18

Total RSPAN VLAN :1
```

To display RSPAN by VLAN name:

```
DGS-3426:5#show rspan vlan_name vlan2
Command: show rspan vlan_name vlan2

RSPAN   : Enabled

RSPAN VLAN ID  : 2
--------------------
Source Port
RX       : 1:2-1:5
TX       :
Redirect Port : 1:18

Total RSPAN VLAN :1
```
ACL FLOW METERING COMMANDS

ACL Flow Metering is used to configure per-flow Bandwidth Control. Before configuring the ACL Flow Meter, here is a list of acronyms and terms users will need to know.

trTCM – Two Rate Three Color Marker. This, along with the srTCM, are two methods available on the switch for metering and marking packet flow. The trTCM meters and IP flow and marks it as a color based on the flow’s surpassing of two rates, the CIR and the PIR.

CIR – Committed Information Rate. Common to both the trTCM and the srTCM, the CIR is measured in bytes of IP packets. IP packet bytes are measured by taking the size of the IP header but not the link specific headers. For the trTCM, the packet flow is marked green if it doesn’t exceed the CIR and yellow if it does. The configured rate of the CIR must not exceed that of the PIR. The CIR can also be configured for unexpected packet bursts using the CBS and PBS fields.

CBS – Committed Burst Size. Measured in bytes, the CBS is associated with the CIR and is used to identify packets that exceed the normal boundaries of packet size. The CBS should be configured to accept the biggest IP packet that is expected in the IP flow.

PIR – Peak Information Rate. This rate is measured in bytes of IP packets. IP packet bytes are measured by taking the size of the IP header but not the link specific headers. If the packet flow exceeds the PIR, that packet flow is marked red. The PIR must be configured to be equal or more than that of the CIR.

PBS – Peak Burst Size. Measured in bytes, the PBS is associated with the PIR and is used to identify packets that exceed the normal boundaries of packet size. The PBS should be configured to accept the biggest IP packet that is expected in the IP flow.

srTCM – Single Rate Three Color Marker. This, along with the trTCM, are two methods available on the switch for metering and marking packet flow. The srTCM marks its IP packet flow based on the configured CBS and EBS. A packet flow that does not reach the CBS is marked green, if it exceeds the CBS but not the EBS its marked yellow, and if it exceeds the EBS its marked red.

CBS – Committed Burst Size. Measured in bytes, the CBS is associated with the CIR and is used to identify packets that exceed the normal boundaries of packet size. The CBS should be configured to accept the biggest IP packet that is expected in the IP flow.

EBS – Excess Burst Size. Measured in bytes, the EBS is associated with the CIR and is used to identify packets that exceed the boundaries of the CBS packet size. The EBS is to be configured for an equal or larger rate than the CBS.

DSCP – Differentiated Services Code Point. The part of the packet header where the color will be added. Users may change the DSCP field of incoming packets.

The ACL Flow Meter function will allow users to color code IP packet flows based on the rate of incoming packets. Users have two types of Flow metering to choose from, trTCM and srTCM, as explained previously. When a packet flow is placed in a color code, the user can choose what to do with packets that have exceeded that color-coded rate.

Green – When an IP flow is in the green mode, its configurable parameters can be set in the Conform field, where the packets can have their DSCP field changed. This is an acceptable flow rate for the ACL Flow Meter function.

Yellow – When an IP flow is in the yellow mode, its configurable parameters can be set in the Exceed field. Users may choose to either Permit or Drop exceeded packets. Users may also choose to change the DSCP field of the packets.

Red – When an IP flow is in the red mode, its configurable parameters can be set in the Exceed field. Users may choose to either Permit or Drop exceeded packets. Users may also choose to change the DSCP field of the packets.

Users may also choose to count exceeded packets by clicking the Counter check box. If the counter is enabled, the counter setting in the access profile will be disabled.

The ACL Flow Meter commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config flow_meter profile_id</td>
<td><value 1-6> access_id <value 1-128> [[tr_tcm cir <value 1-156249> {cbs <value 1-16384>}</td>
</tr>
<tr>
<td>show flow_meter</td>
<td>{profile_id <value 1-6> {access_id <value 1-128>})}</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.
config flow_meter profile_id

Purpose
Used to configure the flow metering function for ACL.

Syntax

```plaintext
<value 1-6> access_id <value 1-128>[ [ tr_tcm cir <value 1-156249> cbs <value 1-16384> pir <value 1-156249> pbs <value 1-16384>] sr_tcm cir <value 1-156249> cbs <value 1-16384> ebs <value 1-16384>] {conform [permit | replace_dscp <value 0-63>] {counter [enable | disable]} exceed [permit | replace_dscp <value 0-63> | drop] {counter [enable | disable]} violate [permit | replace_dscp <value 0-63> | drop] {counter [enable | disable]} | delete }
```

Description
This command is used to configure the parameters for the flow metering function for ACL entries created on the switch.

Parameters
- **profile_id <value 1-6>** – Enter the pre-configured Profile ID for which to configure the ACL Flow Metering parameters.
- **access_id <value 1-128>** – Enter the pre-configured Access ID for which to configure the ACL Flow Metering parameters.
- **tr_tcm** – Choosing this field will allow users to employ the Two Rate Three Color Mode and set the following parameters to determine the color rate of the IP packet flow.
 - **cir <value 1-156249>** – The Committed Information Rate can be set between 1 and 156249. IP flow rates at or below this level will be considered green. IP flow rates that exceed this rate but not the PIR rate are considered yellow.
 - **cbs <value 1-16384>** – The Committed Burst Size. Used to gauge packets that are larger than the normal IP packets. This field does not have to be set for this feature to function properly but is to be used in conjunction with the CIR setting. The CBS should be configured to accept the biggest IP packet that is expected in the IP flow.
 - **pir <value 1-16384>** – The Peak information Rate. IP flow rates that exceed this setting will be considered as red. This field must be set at an equal or higher value than the CIR.
 - **pbs <value 1-16384>** – The Peak Burst Size. This optional field is to be used in conjunction with the PIR. The PBS should be configured to accept the biggest IP packet that is expected in the IP flow.
- **sr_tcm** – Choosing this field will allow users to employ the Single Rate Three Color Mode and set the following parameters to determine the color rate of the IP packet flow.
 - **cir <value 1-156249>** – The Committed Information Rate can be set between 1 and 156249. The color rates are based on the following two fields which are used in conjunction with the CIR.
 - **cbs <value 1-16384>** – Committed Burst Size. Measured in bytes, the CBS is associated with the CIR and is used to identify packets that exceed the normal boundaries of packet size. The CBS should be configured to accept the biggest IP packet that is expected in the IP flow. Packet flows which are lower than this configured value are marked green. Packet flows which exceed this value but are less than the EBS value are marked yellow.
 - **ebs <value 1-16384>** – Excess Burst Size. Measured in bytes, the EBS is associated with the CIR and is used to identify packets that exceed the boundaries of the CBS packet size. The EBS is to be configured for an equal or larger rate than the CBS. Packet flows that exceed this value are marked as red.
- **conform** – This field denotes the green packet flow. Green packet flows may have their DSCP field rewritten to a value stated in this field. Users may also choose to count green packets by checking the Counter check box.
 - **permit** – Enter this parameter to allow packet flows that are in the green flow.
 - **replace_dscp <value 0-63>** – Packets that are in the green flow may have their DSCP field rewritten using this parameter and entering the DSCP value to replace.
 - **counter [enable | disable]** – Use this parameter to enable or disable the packet counter for the specified ACL entry in the green flow.
- **exceed** – This field denotes the yellow packet flow. Yellow packet flows may have excess packets permitted through or dropped. Users may replace the DSCP field of these packets by checking its radio button and entering a new DSCP value in the allotted field.
config flow_meter profile_id

- **permit** – Enter this parameter to allow packet flows that are in the yellow flow.
- **replace_dscp <value 0-63>** – Packets that are in the yellow flow may have their DSCP field rewritten using this parameter and entering the DSCP value to replace.
- **drop** – Enter this parameter to drop packets that are in the yellow flow.
- **counter [enable | disable]** – Use this parameter to enable or disable the packet counter for the specified ACL entry in the yellow flow.

violate – This field denotes the red packet flow. Red packet flows may have excess packets permitted through or dropped. Users may replace the DSCP field of these packets by checking its radio button and entering a new DSCP value in the allotted field.

- **permit** – Enter this parameter to allow packet flows that are in the red flow.
- **replace_dscp <value 0-63>** – Packets that are in the red flow may have their DSCP field rewritten using this parameter and entering the DSCP value to replace.
- **drop** – Enter this parameter to drop packets that are in the red flow.
- **counter [enable | disable]** – Use this parameter to enable or disable the packet counter for the specified ACL entry in the red flow.

delete – Use this parameter to delete the specified flow meter.

Restrictions

Only Administrator and Operator-level users can issue this command. Only two counters may be enabled at any given time.

Example usage:

To enable ACL flow metering:

```
DGS-3426:5#config flow_meter profile_id 1 access_id 1 tr_tcm cir 1000 cbs 200
pir 2000 pbs 200 exceed replace_dscp 21 violate drop
Command: config flow_meter profile_id 1 access_id 1 tr_tcm cir 1000 cbs 200
pir 2000 pbs 200 exceed replace_dscp 21 violate drop
Success.
DGS-3426:5#
```

show flow_meter

Purpose

Used to display the ACL flow meter parameters set on the switch.

Syntax

```
show flow_meter {profile_id <value 1-6> {access_id <value 1-128>}}
```

Description

This command is used to display the flow meter parameters set on the Switch.

Parameters

- **profile_id <value 1-6>** – Enter the profile ID of the ACL entry to be viewed for flow metering.
- **access_id <value 1-128>** – Enter the access ID corresponding to the ACL entry to be viewed.

Restrictions

None.
Example usage:

To display ACL flow metering:

```
DGS-3426:5#show flow_meter profile_id 1 access_id 1
Command: show flow_meter profile_id 1 access_id 1

<table>
<thead>
<tr>
<th>Profile ID</th>
<th>Access ID</th>
<th>Mode</th>
<th>CIR</th>
<th>CBS</th>
<th>PIR</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>trTCM</td>
<td>1000 (64kbps)</td>
<td>200 (Kbyte)</td>
<td>2000 (64kbps)</td>
<td>200 (Kbyte)</td>
</tr>
</tbody>
</table>

Action:
- Conform: Permit  
- Exceed: Permit  
- Violate: Drop

Replace DSCP: 21  
Counter: Disabled  

Total Entries: 1
```

DGS-3426:5#
LAYER 2 PROTOCOL TUNNELING (L2PT) COMMANDS

Users at different sites connected across a service-provider network need to use various Layer 2 protocols to scale their topologies to include all remote sites, as well as the local sites. STP must run properly, and every VLAN should build a proper spanning tree that includes the local site and all remote sites across the service-provider network.

Layer 2 Protocol Tunneling (L2PT), also known as BPDU tunneling, is a feature designed for service providers who carry traffic of multiple customers across their networks and are required to maintain the Layer 2 protocol configurations of each customer without impacting the traffic of other customers.

The L2PT commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>config bpdu_tunnel ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>show bpdu_tunnel</td>
<td></td>
</tr>
<tr>
<td>enable bpdu_tunnel</td>
<td></td>
</tr>
<tr>
<td>disable bpdu_tunnel</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

config bpdu_tunnel ports

Purpose: Used to configure L2PT on specified ports.

Syntax: `<portlist> | all] type [tunnel {stp|gvrp}|uplink|none]`

Description: This command is used to configure L2PT on ports.

When Q-in-Q is enabled on the Switch, the DA will be replaced by the tunnel multicast address, and the BPDU will be tagged with the tunnel VLAN based on the Q-in-Q VLAN configuration and the tunnel/uplink settings.

When Q-in-Q is enabled on the Switch, the BPDU will have its DA replaced by the tunnel multicast address and be transmitted out based on the VLAN configuration and the tunnel/uplink settings.

The tunnel multicast address for STP BPDU is 01-05-5d-00-00-00.

The tunnel multicast address for GVRP BPDU is 01-05-5d-00-00-21.

Parameters:
- `ports` – Specifies the ports on which L2PT will be enabled or disabled.
- `type` – Specifies the type of ports.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure L2PT on ports:

```
DGS-3426:5#config bpdu_tunnel ports 1:1-1:4 type tunnel stp
Command: config bpdu_tunnel ports 1:1-1:4 type tunnel stp
Success.
DGS-3426:5#
```
show bpdu_tunnel

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the L2PT global state, tunnel destination MAC address, and port state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show bpdu_tunnel</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display L2PT global state, tunnel destination MAC address, and port state.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display the L2PT state of all ports:

```plaintext
DGS-3426:5# show bpdu_tunnel
Command: show bpdu_tunnel

BPDU Tunnel : Disabled
STP Tunnel Multicast Address : 01-05-5D-00-00-00
STP Tunnel Port : 1:1-1:4
GVRP Tunnel Multicast Address : 01-05-5D-00-00-21
GVRP Tunnel Port :
Uplink Port :

DGS-3426:5#
```

enable bpdu_tunnel

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable the L2PT function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>enable bpdu_tunnel</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to enable the L2PT function. By default, L2PT is disabled.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable L2PT:

```plaintext
DGS-3426:5# enable bpdu_tunnel
Command: enable bpdu_tunnel

Success.

DGS-3426:5#
```

disable bpdu_tunnel

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable the L2PT function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable bpdu_tunnel</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the L2PT function.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable L2PT:

```plaintext
DGS-3426:5# disable bpdu_tunnel
Command: disable bpdu_tunnel

Success.

DGS-3426:5#
```
DGS-3426:5# disable bpdu_tunnel
Command: disable bpdu_tunnel
Success.
DGS-3426:5#
ARP AND GRATUITOUS ARP COMMANDS

The ARP commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create arpentry</td>
<td><ipaddr> <macaddr></td>
</tr>
<tr>
<td>delete arpentry</td>
<td>[<ipaddr></td>
</tr>
<tr>
<td>show arpentry</td>
<td>(ipif <ipif_name 12></td>
</tr>
<tr>
<td>config arp_aging time</td>
<td><value 0-65535></td>
</tr>
<tr>
<td>clear arptable</td>
<td></td>
</tr>
<tr>
<td>config arpentry</td>
<td><ipaddr> <macaddr></td>
</tr>
<tr>
<td>config gratuitous_arp send ipif_status_up</td>
<td>[enable</td>
</tr>
<tr>
<td>config gratuitous_arp send dup_ip_detected</td>
<td>[enable</td>
</tr>
<tr>
<td>config gratuitous_arp learning</td>
<td>[enable</td>
</tr>
<tr>
<td>enable gratuitous_arp</td>
<td>(ipif <ipif_name 12></td>
</tr>
<tr>
<td>disable gratuitous_arp</td>
<td>(ipif <ipif_name 12></td>
</tr>
<tr>
<td>config gratuitous_arp send periodically ipif</td>
<td><ipif_name 12> interval <value 0-65535></td>
</tr>
<tr>
<td>show gratuitous_arp</td>
<td>(ipif <ipif_name 12></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create arpentry

Purpose: Used to make a static entry into the ARP table.

Syntax: `create arpentry <ipaddr> <macaddr>`

Description: This command is used to enter an IP address and the corresponding MAC address into the Switch’s ARP table.

Parameters
- `<ipaddr>` – The IP address of the end node or station.
- `<macaddr>` – The MAC address corresponding to the IP address above.

Restrictions: Only Administrator and Operator-level users can issue this command. The Switch supports up to 255 static ARP entries.

Example usage:

To create a static ARP entry for the IP address 10.48.74.121 and MAC address 00:50:BA:00:07:36:

```
DGS-3426:5# create arpentry 10.48.74.121 00-50-BA-00-07-36
Command: create arpentry 10.48.74.121 00-50-BA-00-07-36
Success.
DGS-3426:5#
```
delete arpentry

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to delete a static entry into the ARP table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`delete arpentry [ipaddr]</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to delete a static ARP entry, made using the <code>create arpentry</code> command above, by specifying either the IP address of the entry or all. Specifying <code>all</code> clears the Switch’s ARP table.</td>
</tr>
</tbody>
</table>
| Parameters | `<ipaddr>` – The IP address of the end node or station.
| | `all` – Deletes all ARP entries. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example Usage:

To delete an entry of IP address 10.48.74.121 from the ARP table:

```
DGS-3426:5#delete arpentry 10.48.74.121
Command: delete arpentry 10.48.74.121
Success.
DGS-3426:5#
```

config arp_aging time

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the age-out timer for ARP table entries on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config arp_aging time <value 0-65535></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to set the maximum amount of time, in minutes, that an ARP entry can remain in the Switch’s ARP table, without being accessed, before it is dropped from the table.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>time <value 0-65535></code> – The ARP age-out time, in minutes. The value may be set in the range of 0 to 65535 minutes with a default setting of 20 minutes.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure ARP aging time:

```
DGS-3426:5#config arp_aging time 30
Command: config arp_aging time 30
Success.
DGS-3426:5#
```

show arpentry

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the ARP table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`show arpentry [ipif <ipif_name 12></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the current contents of the Switch’s ARP table.</td>
</tr>
</tbody>
</table>
| Parameters | `ipif <ipif_name 12>` – The name of the IP interface the end node or station for which the ARP table entry was made, resides on.
| | `ipaddress <ipaddr>` – The network address corresponding to the IP interface name above.
| | `static` – Displays the static entries to the ARP table. |
| Restrictions | None. |

424
Example usage:

To display the ARP table:

```
DGS-3426:5#show arpentry
Command: show arpentry

ARP Aging Time : 20

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>10.0.0.0</td>
<td>FF-FF-FF-FF-FF-FF</td>
<td>Local/Broadcast</td>
</tr>
<tr>
<td>System</td>
<td>10.44.8.253</td>
<td>00-44-08-FD-09-09</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.63.67.7</td>
<td>00-09-41-D8-15-0E</td>
<td>Dynamic</td>
</tr>
<tr>
<td>System</td>
<td>10.90.90.90</td>
<td>00-19-5B-F5-26-C0</td>
<td>Local</td>
</tr>
<tr>
<td>System</td>
<td>10.255.255.255</td>
<td>FF-FF-FF-FF-FF</td>
<td>Local/Broadcast</td>
</tr>
</tbody>
</table>

Total Entries: 5
```

DGS-3426:5#

clear arptable

Purpose: Used to remove all dynamic ARP table entries.

Syntax: `clear arptable`

Description: This command is used to remove dynamic ARP table entries from the Switch’s ARP table. Static ARP table entries are not affected.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example Usage:

To remove dynamic entries in the ARP table:

```
DGS-3426:5#clear arptable
Command: clear arptable

Success.
```

DGS-3426:5#

config arpentry

Purpose: Used to configure a static entry in the ARP table.

Syntax: `config arpentry <ipaddr> <macaddr>`

Description: This command is used to configure a static entry in the ARP Table. The user may specify the IP address and the corresponding MAC address of an entry in the Switch’s ARP table.

Parameters:
- `<ipaddr>` – The IP address of the end node or station.
- `<macaddr>` – The MAC address corresponding to the IP address above.

Restrictions: Only Administrator and Operator-level users can issue this command.
Example usage:

To configure a static ARP entry for the IP address 10.48.74.12 and MAC address 00:50:BA:00:07:36:

```
DGS-3426:5#config arpentry 10.48.74.12 00-50-BA-00-07-36
Command: config arpentry 10.48.74.12 00-50-BA-00-07-36
Success.
DGS-3426:5#
```

config gratuitous_arp send ipif_status_up

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable/disable the sending of gratuitous ARP requests while the IP interface status comes up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config gratuitous_arp send ipif_status_up [enable</td>
</tr>
<tr>
<td>Description</td>
<td>The command is used to enable or disable the sending of gratuitous ARP request packets while the IPIF interface comes up. This is used to automatically announce the interface's IP address to other nodes. By default, the state is disabled.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>enable</code> – Enable sending of gratuitous ARP when IPIF status comes up.
<code>disable</code> – Disable sending of gratuitous ARP when IPIF status comes up.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To enable send gratuitous ARP request in a normal situation:

```
DGS-3426:5#config gratuitous_arp send ipif_status_up enable
Command: config gratuitous_arp send ipif_status_up enable
Success.
DGS-3426:5#
```

config gratuitous_arp send dup_ip_detected

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to enable/disable the sending of gratuitous ARP requests while a duplicate IP address is being detected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config gratuitous_arp send duplicate_ip_detected [enable</td>
</tr>
<tr>
<td>Description</td>
<td>The command is used to enable or disable the sending of gratuitous ARP request packets while a duplicate IP is being detected. By default, the state is disabled. For this command, the duplicate IP detected means that the system received an ARP request packet that is sent by an IP address that matches the system's own IP address. In this case, the system knows that somebody is using an IP address that is in conflict with the system. In order to reclaim the correct host of this IP address, the system can send out the gratuitous ARP request packet for this duplicate IP address.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>enable</code> – Enable sending of gratuitous ARP when a duplicate IP is detected.
<code>disable</code> – Disable sending of gratuitous ARP when a duplicate IP is detected.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>
Example Usage:

To enable send a gratuitous ARP request when a duplicate IP is detected:

```
DGS-3426:5#config gratuitous_arp send duplicate_ip_detected enable
Command: config gratuitous_arp send duplicate_ip_detected enable
Success.
DGS-3426:5#
```

config gratuitous_arp learning

Purpose

Used to enable/disable learning of ARP entries in the ARP cache based on the received gratuitous ARP packets.

Syntax

```
config gratuitous_arp learning [enable|disable]
```

Description

The command is used to enable or disable updating the ARP cache based on the received gratuitous ARP packets. The gratuitous ARP packet is sent by a source IP address that is identical to the IP that the packet is queries for. Note that, with the gratuitous ARP learning, the system will not learn new entry but only do the update on the ARP table based on the received gratuitous ARP packet. By default, the state is disabled.

Parameters

- **enable** – Enable learning of ARP entry based on the received gratuitous ARP packet.
- **disable** – Disable learning of ARP entry based on the received gratuitous ARP packet.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To enable learning of ARP entry based on the received gratuitous ARP packet:

```
DGS-3426:5#config gratuitous_arp learning enable
Command: config gratuitous_arp learning enable
Success.
DGS-3426:5#
```

enable gratuitous_arp

Purpose

Used to enable gratuitous ARP trap and log state.

Syntax

```
enable gratuitous_arp {ipif <ipif_name 12>} {trap |log} (1)
```

Description

The command is used to enable gratuitous ARP trap and log state. The switch can trap and log the IP conflict event to inform the administrator. By default, trap is disabled and event log is disabled.

Parameters

- **ipif <ipif_name 12>** – The name of the IP interface the end node or station for which the ARP table entry was made, resides on.
- **{trap|log}** – Select gratuitous ARP trap and/or log state.

Restrictions

Only Administrator and Operator-level users can issue this command.

Example usage:

To enable system interface’s gratuitous ARP log and trap:

```
DGS-3426:5#enable gratuitous_arp System trap log
Command: enable gratuitous_arp System trap log
Success.
DGS-3426:5#
```
disable gratuitous_arp

Purpose: Used to disable gratuitous ARP trap and log state.

Syntax:
```
disable gratuitous_arp {ipif <ipif_name 12>} {trap |log} (1)
```

Description: This command is used to disable gratuitous ARP trap and log state. When the trap and log are disabled, the switch won’t trap and log IP conflict events to inform the administrator.

Parameters:
- `ipif <ipif_name 12>` – The name of the IP interface the end node or station for which the ARP table entry was made, resides on.
- `{trap|log}` – Select gratuitous ARP trap and/or log state.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example Usage:

To disable the system interface’s gratuitous ARP log and trap:

```
DGS-3426:5#disable gratuitous_arp System trap log
Command: disable gratuitous_arp System trap log
Success.
DGS-3426:5#
```

config gratuitous_arp send periodically

Purpose: Used to configure the interval for periodical sending of gratuitous ARP request packet.

Syntax:
```
config gratuitous_arp send periodically ipif <ipif_name 12> interval <value 0-65535>
```

Description: The command is used to configure the interval for the periodic sending of gratuitous ARP request packets. By default, the interval is 0.

Parameters:
- `<ipif_name 12>` – The name of the Layer 3 interface.
- `<value 0-65535>` – Periodically send gratuitous ARP interval time in seconds. 0 – means not to send gratuitous ARP periodically.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To configure gratuitous ARP interval to 5 for IPIF System:

```
DGS-3426:5#config gratuitous_arp send periodically ipif System interval 5
Command: config gratuitous_arp send periodically ipif System interval 5
Success.
DGS-3426:5#
```

show gratuitous_arp

Purpose: Used to display gratuitous ARP configuration.

Syntax:
```
show gratuitous_arp {ipif <ipif_name>}
```

Description: This command is used to display gratuitous ARP configuration.

Parameters:
- `<ipif_name 12>` – The interface name of the Layer 3 device.

Restrictions: None.
Example usage:

To display gratuitous ARP log and trap state:

```
DGS-3426:5#show gratuitous_arp
Command: show gratuitous_arp

Send on IPIF status up : Disabled
Send on Duplicate_IP_Detected : Disabled
Gratuitous ARP Learning : Disabled

IP Interface Name : System
    Gratuitous ARP Trap : Disabled
    Gratuitous ARP Log : Disabled
    Gratuitous ARP Periodical Send Interval : 0

Total Entries: 1

DGS-3426:5#
```
The Compound Authentication commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create authentication guest_vlan</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>delete authentication guest_vlan</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>config authentication guest_vlan</td>
<td>[vlan <vlan_name 32></td>
</tr>
<tr>
<td>config authentication ports</td>
<td>[<portlist>][all] [auth_mode [port_based</td>
</tr>
<tr>
<td>show authentication guest_vlan</td>
<td></td>
</tr>
<tr>
<td>show authentication ports</td>
<td>{<portlist>}</td>
</tr>
<tr>
<td>enable authorization network</td>
<td></td>
</tr>
<tr>
<td>disable authorization network</td>
<td></td>
</tr>
<tr>
<td>show authorization</td>
<td></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create authentication guest_vlan

Purpose
Used to assign a static VLAN to be guest VLAN.

Syntax
```
create authentication guest_vlan [vlan <vlan_name 32> | vlanid <vlanid 1-4094>]
```

Description
This command is used to assign a static VLAN to be a guest VLAN. The specific VLAN which is assigned to a guest VLAN must exist first. The specific VLAN which has been assigned to a guest VLAN can’t be deleted.

For further description of this command please see description for config authentication guest_vlan ports.

Parameters
- `vlan_name 32` – Specifies the guest vlan by VLAN name.
- `vlanid` – Specifies the guest VLAN by VLAN ID.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create an authentication guest VLAN:

```
DGS-3426:5# create authentication guest_vlan vlan Accounting
Command: create authentication guest_vlan vlan Accounting
Success.
DGS-3426:5#
```
delete authentication guest_vlan

Purpose
Used to delete a configured authentication guest VLAN.

Syntax
`delete authentication guest_vlan [vlan <vlan_name 32> | vlanid <vlanid 1-4094>]`

Description
This command is used to delete the guest VLAN settings, but will not delete the static VLAN. All ports which have an enabled guest VLAN will move to the original VLAN after the guest VLAN has been deleted.

Parameters
- `vlan_name 32` – Specifies the guest vlan by VLAN name.
- `vlanid` – Specifies the guest vlan by VLAN ID.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete an authentication guest VLAN:

```
DGS-3426:5#delete authentication guest_vlan vlan Accounting
Command: delete authentication guest_vlan vlan Accounting
Success.
DGS-3426:5#
```

config authentication guest_vlan

Purpose
Used to configure the security port(s) as a specific guest VLAN member.

Syntax
`config authentication guest_vlan [vlan <vlan_name 32> | vlanid <vlanid 1-4094>] [add | delete] ports [<portlist> |all]`

Description
The user can use this command to assign or remove ports to/from a guest VLAN.

If `multi_authen_methods` mode is `none`, this port is doing a single authentication. The port will operate based on the guest VLAN configured by the single authentication module’s command. If the single authentication module’s guest VLAN command (for example, JWAC has no guest VLAN command) is not available, the port will not be in guest VLAN mode.

If `multi_authen_methods` mode is anything other than `none`, the port is doing compound authentication. The port will operate based on the guest VLAN configured by the common authentication command.

Parameters
- `vlan_name` – Assign a name of a guest VLAN. The VLAN must be an existing static VLAN.
- `vlanid` – Assign a VLAN ID of a guest VLAN. The VLAN must be an existing static VLAN.
- `add` – Specifies to add a port list to the guest VLAN.
- `delete` – Specifies to delete a port list from the guest VLAN.
- `portlist` – Specifies the configured port(s).

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure authentication guest VLAN ports:

```
DGS-3426:5#config authentication guest_vlan vlan RG add ports all
Command: config authentication guest_vlan vlan RG add ports all
Success.
DGS-3426:5#
```
config authentication ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to configure security ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config authentication ports [portlist] all [auth_mode [port_based</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the authorization mode and authentication method on ports.</td>
</tr>
<tr>
<td>If <code>multi_authen_methods</code> mode is <code>none</code>, this port is doing single authentication. The port will operate based on the authentication mode configured by the single authentication module's command.</td>
<td></td>
</tr>
<tr>
<td>If <code>multi_authen_methods</code> mode is anything other than <code>none</code>, the port is doing compound authentication. The port will operate based on the authentication mode configured by the compound authentication command.</td>
<td></td>
</tr>
<tr>
<td>The enable and disable settings of individual authentication will always take effect. Suppose that a port's <code>multi_authen_methods</code> is set to <code>any</code> but MBAC is disabled and JWAC and 802.1X are enabled, then the user must pass either JWAC or 802.1X. Similarly, if the <code>multi_authen_methods</code> for a port is set to <code>impb_jwac</code> but JWAC is disabled and IMPB is enabled, then the authentication result will be the result of IMPB authentication.</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td><code>portlist</code> – Specifies the ports to be configured. <code>auth_mode</code> – Choose between port-based or host-based. <code>port-based</code>: If one of the attached hosts passes the authentication process, all hosts on the same port will be granted access to the network. If the user fails the authorization process, this port will keep trying the next authentication. <code>host-based</code>: Every user can be authenticated individually. <code>multi_authen_methods</code> – Specifies the method for compound authentication. <code>none</code> – Specifies that compound authentication is not enabled. <code>any</code> – If any one of the authentication methods (802.1X, MBAC, and JWAC) are passed, then authentication will be passed. <code>dot1x_impb</code> – 802.1X will be verified first, and then IMPB will be verified. Both authentication methods need to be passed. <code>impb_jwac</code> – JWAC will be verified first, and then IMPB will be verified. Both authentication methods need to be passed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure the authentication mode of all ports to host-based:

```
DGS-3426:5#config authentication ports all auth_mode host_based
Command: config authentication ports all auth_mode host_based
Success.
DGS-3426:5#
```

To configure the compound authentication method of all ports to “any”:

```
DGS-3426P:5#config authentication ports all multi_authen_methods any
Command: config authentication ports all multi_authen_methods any
Success.
DGS-3426P:5#
```
show authentication guest_vlan

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to display the guest VLAN settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show authentication guest_vlan</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to show the information of the guest VLAN.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display the guest VLAN settings on the Switch:

```
DGS-3426:5#show authentication guest_vlan
Command: show authentication guest_vlan
Guest VLAN VID : 1
Guest VLAN Member Ports: 4
  Total Entries: 1

DGS-3426:5#
```

show authentication ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This command is used to display authentication settings on port(s).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show authentication ports {<portlist>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the authentication method and authorization mode on ports.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>portlist</code> – Displays compound authentication on specific port(s).</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:
To display authentication settings for all ports:

```
DGS-3426:5#show authentication ports
Command: show authentication ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Methods</th>
<th>Authorized Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:2</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:3</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:4</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:5</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:6</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:7</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:8</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:9</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:10</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:11</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:12</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:13</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:14</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:15</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:16</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:17</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:18</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:19</td>
<td>Any</td>
<td>Host_based</td>
</tr>
<tr>
<td>1:20</td>
<td>Any</td>
<td>Host_based</td>
</tr>
</tbody>
</table>

```

CTRL+C ESC q Quit SPACE a Next Page ENTER Next Entry All
enable authorization network

Purpose To enable authorization on the Switch.
Syntax enable authorization network
Description This command is used to enable authorization of the network. When the authorization for network is enabled, whether the authorized data assigned by the RADUIS server will be accepted will depend on the individual module’s setting. Authorization for the network is enabled by default.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:
To enable the authorization network:

DGS-3426:5#enable authorization network
Command: enable authorization network
Success.
DGS-3426:5#

disable authorization network

Purpose To disable authorization on the Switch.
Syntax disable authorization network
Description This command is used to disable the authorization of the network. When the authorization for network is disabled, the authorization data assigned by the RADUIS server will not be accepted and take effect. Authorization for the network is enabled by default.
Parameters None.
Restrictions Only Administrator and Operator-level users can issue this command.

Example usage:
To disable the authorization network:

DGS-3426:5#disable authorization network
Command: disable authorization network
Success.
DGS-3426:5#

show authorization

Purpose This command is used to show authorization status.
Syntax show authorization
Description This command is used to display the current authorization status on the Switch.
Parameters None.
Restrictions None.
Example usage:

To display authorization:

```
DGS-3426:5#show authorization
Command: show authorization

Authorization for Network: Enabled

DGS-3426:5#
```
WEB-BASED ACCESS CONTROL (WAC) COMMANDS

The Web-based Access Control (WAC) commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable wac</td>
<td></td>
</tr>
<tr>
<td>disable wac</td>
<td></td>
</tr>
<tr>
<td>config wac ports</td>
<td>[<portlist></td>
</tr>
<tr>
<td>config wac method</td>
<td>[local</td>
</tr>
<tr>
<td>config wac auth_failover</td>
<td>[enable</td>
</tr>
<tr>
<td>config wac default_redirpath</td>
<td><string 128></td>
</tr>
<tr>
<td>config wac</td>
<td></td>
</tr>
<tr>
<td>clear_default_redirpath</td>
<td></td>
</tr>
<tr>
<td>config wac virtual_ip</td>
<td><ipaddr></td>
</tr>
<tr>
<td>config wac switch_http_port</td>
<td>< tcp_port_number 1-65535> {http</td>
</tr>
<tr>
<td>create wac user</td>
<td><username 15> {vlan <vlan_name 32></td>
</tr>
<tr>
<td>delete wac user</td>
<td>[<username 15></td>
</tr>
<tr>
<td>config wac user</td>
<td><username 15> {vlan <vlan_name 32></td>
</tr>
<tr>
<td>config wac authorization network</td>
<td>{radius [enable</td>
</tr>
<tr>
<td>show wac</td>
<td></td>
</tr>
<tr>
<td>show wac ports</td>
<td>{<portlist>}</td>
</tr>
<tr>
<td>show wac user</td>
<td></td>
</tr>
<tr>
<td>show wac auth_state ports</td>
<td>{<portlist> }</td>
</tr>
<tr>
<td>clear wac auth_state</td>
<td>[ports [<portlist></td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

enable wac

Purpose
Used to enable Web-based access control on the Switch.

Syntax
enable wac

Description
This command is used to enable the WAC function on the Switch.

Parameters
None.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To enable WAC:

To enable WAC:
DGS-3426:5#enable wac
Command: enable wac
Success.
DGS-3426:5#

disable wac

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to disable Web-based access control on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>disable wac</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to disable the WAC function on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To disable WAC:

DGS-3426:5#disable wac
Command: disable wac
Success.
DGS-3426:5#

config wac ports

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure WAC port level settings on the Switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config wac ports [portlist] [all] [state [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure WAC port level settings on the Switch.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>state</code> – Specifies to enable/disable WAC state.</td>
</tr>
<tr>
<td></td>
<td><code>aging_time</code> – A time period during which an authenticated host will be kept in authenticated state. “infinite” indicates the authenticated host on the port will not ageout. The default value is 24 hours.</td>
</tr>
<tr>
<td></td>
<td><code>idle_time</code> – A time period after which an authenticated host will be moved to an un-authenticated state if there is no traffic during that period. “infinite” indicates the host will not be removed from the authenticated state due to the idle of traffic. The default value is infinite.</td>
</tr>
<tr>
<td></td>
<td><code>block_time</code> – If a host fails to pass the authentication, it will be blocked for this period of time before it can be re-authenticated. The default value is 60 seconds.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure port WAC state:

DGS-3426:5#config wac ports 1-8 state enable
Command: config wac ports 1:1-1:8 state enable
Success.
DGS-3426:5#
config wac method

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the global parameter of the web authentication.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config wac method [local</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the global parameter for Web authentication.</td>
</tr>
</tbody>
</table>
| Parameters | `method` – Specifies the authenticated method.
`local` – The authentication will be done via the local database.
`radius` – The authentication will be done via the RADIUS server. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure the authentication method:

DGS-3426:5# config wac method radius

Command: config wac method radius

Success.

DGS-3426:5#

config wac auth_failover

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure WAC authorization failover.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config wac auth_failover [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure WAC authorization failover. When the authentication failover is disabled, if RADIUS servers are unreachable, the authentication will fail. When the authentication failover is enabled, if RADIUS servers authentication are unreachable, the local database will be used to do the authentication. The default state is disabled.</td>
</tr>
</tbody>
</table>
| Parameters | `enable` – Enables the protocol authentication failover.
`disable` – Disables the protocol authentication failover. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure WAC authentication failover:

DGS-3426:5# config wac auth_failover enable

Command: config wac auth_failover enable

Success.

DGS-3426:5#

config wac default_redirpath

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure WAC default redirect path.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>config wac default_redirpath <string 128></code></td>
</tr>
</tbody>
</table>
| Description | This command is used to configure WAC default redirect path. If the default redirect path is configured, the user will be redirected to the default redirect path after successful authentication.
When the string is cleared, the client will not be redirected to another URL after successful authentication. |
| Parameters | `<string 128>` – The URL that the client will be redirected to after successful authentication. The redirected path is cleared by default. |
config wac default_redirpath

| Restrictions | Only Administrator and Operator-level users can issue this command. |

Example usage:

To configure the WAC default redirect path:

```
DGS-3426:5# config wac default_redirpath http://2.3.2.3
Command: config wac default_redirpath http://2.3.2.3
Success.
DGS-3426:5#
```

config wac clear_default_redirpath

Purpose	Used to clear the WAC default redirect path.
Syntax	`config wac clear_default_redirpath`
Description	This command is used to clear the WAC default redirect path. When the string is cleared, the client will not be redirected to another URL after successful authentication.
Parameters	None.
Restrictions	Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the WAC clear default redirect path:

```
DGS-3426:5# config wac clear_default_redirpath
Command: config wac clear_default_redirpath
Success.
DGS-3426:5#
```

config wac virtual_ip

| Purpose | Used to configure the WAC virtual IP address used to accept authentication requests from an unauthenticated host. |
| Syntax | `config wac virtual_ip <ipaddr>` |
| Description | When the virtual IP is specified, the TCP packet sent to the virtual IP will get a reply. If the virtual IP is enabled, TCP packets sent to the virtual IP or physical IPIF’s IP address will both get the a reply.
When the virtual IP is set 0.0.0.0, the function of virtual IP is disabled. By default, the virtual IP is 0.0.0.0. The virtual IP will not respond to any ARP request or ICMP packets.
To make the function work properly, the virtual IP should not be an existing IP address. It also cannot be located on the existing subnet. |
| Parameters | `<ipaddr>` – Specifies the IP address of the virtual IP. |
| Restrictions | Only Administrator and Operator-level users can issue this command. |
Example usage:
To configure the WAC virtual IP:

```
DGS-3426:5# config wac virtual_ip 1.1.1.1
Command: config wac virtual_ip 1.1.1.1
Success.
DGS-3426:5#
```

config wac switch_http_port

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the TCP port that the WAC Switch listens to.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config wac switch_http_port <tcp_port_number 1-65535> {http</td>
</tr>
<tr>
<td>Description</td>
<td>The TCP port for HTTP or HTTPS is used to identify the HTTP or HTTPS packets that will be trapped to the CPU for authentication processing, or to access the login page. If not specified, the default port number for HTTP is 80, and the default port number for HTTPS is 443. If no protocol is specified, the protocol is HTTP. The HTTP cannot run at TCP port 443, and the HTTPS cannot run at TCP port 80.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><tcp_port_number 1-65535></code> – A TCP port which the WAC Switch listens to and uses to finish the authenticating process. <code>http</code> – To specify that WAC runs HTTP protocol on this TCP port. <code>https</code> – To specify that WAC runs HTTPS protocol on this TCP port.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:
To configure the WAC switch HTTP port:

```
DGS-3426:5# config wac switch_http_port 8888 http
Command: config wac switch_http_port 8888 http
Success.
DGS-3426:5#
```
create wac user

Purpose
Used to create a user account for Web-based Access control.

Syntax
create wac user <username 15> {[vlan <vlan_name 32> | vlanid <vlanid 1-4094>]

Description
This command is used to create accounts for Web-based access control. This user account is independent from the login user account.

If VLAN is not specified, the user will not get a VLAN assigned after the authentication.

Parameters
- **username** – User account for Web-based access control.
- **vlan** – Specifies the authentication VLAN name.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To create WAC account:

```
DGS-3426:5# create wac user vlan vlanid 2
Command: create wac user vlan vlanid 2
Enter a case-sensitive new password:***
Enter the new password again for confirmation:***
Success.
DGS-3426:5#
```

delete wac user

Purpose
Used to delete the Web-based access control.

Syntax
delete wac user <username 15>

Description
This command is used to delete an account.

Parameters
- **username** – Specifies the user name for Web-based access control.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete WAC account:

```
DGS-3426:5# delete wac user 123
Command: delete wac user 123
Success.
DGS-3426:5#
```
config wac user

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the VLAN ID of the user account.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config wac user <username 15> [vlan <vlan_name 32></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to change the VLAN associated with a user.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>username</code> – The name of user account to be configured.</td>
</tr>
<tr>
<td></td>
<td><code>vlan</code> – Specifies the Authentication VLAN name.</td>
</tr>
<tr>
<td></td>
<td><code>clear_vlan</code> – Specifies that a previously configured VLAN is to be cleared.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To config the WAC user:

```
DGS-3426:5#config wac user alpha vlan vlan123
Command: config wac user alpha vlan vlan123
Enter a old password:***
Enter a case-sensitive new password:****
Enter the new password again for confirmation:****
Success.
DGS-3426:5#
```

config wac authorization network

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To enable the acceptance of an authorized configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config wac authorization network {radius [enable</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to configure the acceptance of an authorized configuration. When the authorization is enabled for WAC’s radius, the authorized data assigned by the RADUIS server will be accepted if the global authorization network is also enabled. When the authorization is enabled for WAC’s local, the authorized data assigned by the local database will be accepted.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>radius</code> – If enabled, the authorized data assigned by the RADUIS server will be accepted if the global authorization network is enabled. The default state is enabled. <code>local</code> – If specified to enable, the authorized data assigned by the local database will be accepted if the global authorization network is enabled. The default state is enabled.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To configure WAC authorization from the local database:

```
DGS-3426:5#config wac authorization network local disable
Command: config wac authorization network local disable
Success.
DGS-3426:5#
```
show wac

Purpose
Used to display the Web authentication global settings.

Syntax
```
show wac
```

Description
This command is used to display the WAC global settings.

Parameters
None.

Restrictions
None.

Example usage:
To display WAC:

```
DGS-3426:5#show wac
Command: show wac

Web-Base Access Control
--------------------------------
State                   : Disabled
Method                  : Local
Authentication Failover : Disabled
Redirect Path           : 
Virtual IP              : 0.0.0.0
Switch HTTP Port        : 80 (HTTP)
RADIUS Authorization    : Enabled
Local Authorization     : Disabled

DGS-3426:5#
```

show wac ports

Purpose
Used to display the Web Authentication port level settings.

Syntax
```
show wac ports {<portlist>}
```

Description
This command is used to display the port level setting.

Parameters
`ports` – A range of member ports to show the status.

Restrictions
None.

Example usage:
To show WAC ports:

```
DGS-3426:5#show wac ports 1-3
Command: show wac ports 1:1-1:3

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Aging Time</th>
<th>Idle Time</th>
<th>Block Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Minutes)</td>
<td>(Minutes)</td>
<td>(Seconds)</td>
</tr>
<tr>
<td>1:1</td>
<td>Disabled</td>
<td>1440</td>
<td>Infinite</td>
<td>60</td>
</tr>
<tr>
<td>1:2</td>
<td>Disabled</td>
<td>1440</td>
<td>Infinite</td>
<td>60</td>
</tr>
<tr>
<td>1:3</td>
<td>Disabled</td>
<td>1440</td>
<td>Infinite</td>
<td>60</td>
</tr>
</tbody>
</table>

DGS-3426:5#
```
show wac user

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the Web Authentication user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show wac user</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the Web Authentication account.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To show Web Authentication account:

```
DGS-3426:5# show wac user
Command: show wac user

<table>
<thead>
<tr>
<th>Username</th>
<th>Password</th>
<th>VLAN ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Entries: 1
```

show wac auth_state

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the authentication state of a port.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>show wac auth_state ports {<portlist>}</code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the authentication state for ports.</td>
</tr>
<tr>
<td></td>
<td>If port 1 is in host-based mode:</td>
</tr>
<tr>
<td></td>
<td>(1) mac 00-00-00-00-00-01 is authenticated without VLAN assigned (may be the specified target VLAN does not exist or the target VLAN has not been specified), the ID of RX VLAN will be displayed (RX VLAN ID is 4004 in this example).</td>
</tr>
<tr>
<td></td>
<td>(2) mac 00-00-00-00-00-02 is authenticated with target VLAN assigned, the ID of target VLAN will be displayed (target VLAN ID is 1234 in this example)</td>
</tr>
<tr>
<td></td>
<td>(3) mac 00-00-00-00-00-03 failed to pass authentication, the VID field will be shown as "-" indicating that packets with SA 00-00-00-00-00-03 will be dropped no matter which VLAN these packets are from.</td>
</tr>
<tr>
<td></td>
<td>(4) mac 00-00-00-00-00-04 attempts to start authentication, the VID field will be shown as "-" until authentication completed.</td>
</tr>
<tr>
<td></td>
<td>If port 2 is in port-based mode:</td>
</tr>
<tr>
<td></td>
<td>(1) mac 00-00-00-00-00-10 is the mac which made port 2 pass authentication, mac address with "(P)" in the end indicates that this authentication is from a port in port-based mode.</td>
</tr>
<tr>
<td></td>
<td>If port 3 is in port-based mode:</td>
</tr>
<tr>
<td></td>
<td>(1) mac 00-00-00-00-00-20 attempts to start authentication, mac address with "(P)" in the end indicates the port-based mode authentication.</td>
</tr>
<tr>
<td></td>
<td>(2) mac 00-00-00-00-00-21 failed to pass authentication, mac address with "(P)" in the end indicates the port-based mode authentication.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In port-based mode, the VLAN ID field is displayed in the same way as host-based mode</td>
</tr>
<tr>
<td>Parameters</td>
<td><code>ports</code> – Specifies the list of ports whose WAC state will be displayed.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To display the WAC authentication state:
DGS-3426:5# show wac auth_state ports 1-3
Command: show wac auth_state ports 1:1-1:3

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC Address</th>
<th>State</th>
<th>VID</th>
<th>Priority</th>
<th>Aging Time/Idle Time</th>
<th>Block Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00-00-00-00-00-01</td>
<td>Authenticated</td>
<td>4004</td>
<td>3</td>
<td>Infinite</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-02</td>
<td>Authenticated</td>
<td>1234</td>
<td>-</td>
<td>Infinite</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-03</td>
<td>Blocked</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00-00-00-00-00-04</td>
<td>Authenticating</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>00-00-00-00-00-10</td>
<td>Authenticated</td>
<td>1234</td>
<td>2</td>
<td>1440</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>00-00-00-00-00-20</td>
<td>Authenticating</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>00-00-00-00-00-21</td>
<td>Blocked</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

Total Authenticating Hosts : 2
Total Authenticated Hosts : 3
Total Blocked Hosts : 2

DGS-3426:5#

clear wac auth_state

Purpose: Used to clear the authentication state of a port.

Syntax: `clear wac auth_state [ports [<portlist>] | all] {authenticated | authenticating | blocked} | macaddr <macaddr>]`

Description: This command is used to clear the authentication state of a port. If the port is in port-based mode, the port will return to an un-authenticated state. All the timers associated with the port will be reset.

If the port is in host based mode, users on this port will be cleared. The user needs to be re-authenticated to access the network.

Parameters
- `ports` – Specifies the list of ports whose WAC state will be cleared.
- `authenticated` – Specifies that all authenticated users for a port will be cleared.
- `authenticating` – Specifies that all authenticating users for a port will be cleared.
- `blocked` – Specifies to clear all blocked users for a port.
- `macaddr` – Specifies to clear a specific user by their MAC address.

Restrictions: Only Administrator and Operator-level users can issue this command.
Example usage:

To clear WAC authentication state:

```
DGS-3426:5# clear wac auth_state ports 1-5
Command: clear wac auth_state ports 1:1-1:5
Success.
DGS-3426:5#
```
PROTOCOL VLAN GROUP COMMANDS

For bridges that implement Port-and-Protocol-based VLAN classification, the VID associated with an Untagged or Priority-tagged Frame is determined based on the Port of arrival of the frame into the bridge and on the protocol identifier of the frame. If there is no protocol VLAN configured on the ingress port, all the untagged packets incoming on the port will be classified into PVID VLAN. This classification mechanism requires defining the protocol groups which specified frame type and protocol value to match for. A protocol group can be bound to a port and given a VLAN ID. If the incoming untagged packet matches the protocol group the VLAN ID will be assigned. A port can bind with multiple protocol groups. This allows untagged packets be classified into different VLANs based on packet content. The same protocol group can be assigned to multiple ports with different VLAN ID assigned, i.e. the same protocol can be given different VLAN ID through binding to different ports.

The Protocol VLAN Group commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>create dot1v_protocol_group</td>
<td>group_id < id></td>
</tr>
<tr>
<td>config dot1v_protocol_group</td>
<td>group_id <id> [add</td>
</tr>
<tr>
<td>delete dot1v_protocol_group</td>
<td>group_id <id></td>
</tr>
<tr>
<td>show dot1v_protocol_group</td>
<td>(group_id <id>)</td>
</tr>
<tr>
<td>config port dot1v</td>
<td>ports [<portlist></td>
</tr>
<tr>
<td>show port dot1v</td>
<td>(ports <portlist>)</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

create dot1v_protocol_group

Purpose: Used to create a protocol group.

Syntax: create dot1v_protocol_group group_id <id>

Description: This command is used to create a protocol group. This group is to be configured using the config dot1v_protocol_group command where users may set the parameters for this group. After being configured, this group may be attached to a port or range of ports using the config port dot1v command.

Parameters: group_id <id> – Enter an integer from 1 to 16 to identify the protocol VLAN group being created here.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To create a protocol group:

```
DGS-3426:5# create dot1v_protocol_group group_id 1
Command: create dot1v_protocol_group group_id 1
Success.
DGS-3426:5#
```
config dot1v_protocol_group

Purpose
Used to configure the parameters for a protocol VLAN group.

Syntax
```
cfg dot1v_protocol_group group_id <id> [add | delete] protocol [ethernet_2 | ieee802.3_snap | ieee802.3_llc] <protocol_value>
```

Description
This command is used to configure a protocol template for a group. Users may set the frame type to be added or deleted, along with the appropriate `protocol_value` in hexadecimal form. After being configured, this group may be attached to a port or range of ports using the `config port dot1v` command.

Parameters
- `group_id <id>` – Enter an integer from 1 to 16 to identify the protocol VLAN group being configured here.
- `add | delete` – Choose whether to add or delete the protocol to this group. This protocol is identified using the following `protocol` parameter.
- `protocol` – Choose the appropriate frame type to be added to this group. This frame type will be identified by the switch by examining the packet header of incoming packets and matching it to the `protocol_value` stated here. This frame type must be followed by the correct `protocol_value`. The user has three choices:
 - `ethernet_2` – Choose this parameter if you wish this protocol group to employ the Ethernet2 frame type. This frame type is identified by the 16-bit (2 octet) IEEE802.3 type field in the packet header, which is to be stated using the following `protocol_value`.
 - `ieee802.3_snap` – Choose this parameter if you wish this protocol group to employ the Sub Network Access Protocol (SNAP) frame type. This frame type is identified by the 16-bit (2 octet) IEEE802.3 type field in the packet header, which is to be stated using the following `protocol_value`.
 - `ieee802.3_llc` – Choose this parameter if you wish this protocol group to employ the Link Logical Control (LLC) frame type. This frame type is identified by the 2-octet IEEE802.3 Link Service Access Point (LSAP) pair field in the packet header, which is to be stated using the following `protocol_value`. The first octet defines the Destination Service Access Point value and the second octet is the Source Service Access Point (SSAP) value.
- `<protocol_value>` – Enter the corresponding protocol value of the protocol identified in the previous field. This value must be stated in a hexadecimal form.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:
To configure a protocol template:

```
DGS-3426:5# config dot1v_protocol_group group_id 1 add protocol ethernet_2 86DD
Command: config dot1v_protocol_group group_id 1 add protocol ethernet_2 86DD
Success.
DGS-3426:5#
```

delete dot1v_protocol_group

Purpose
Used to delete a protocol VLAN group.

Syntax
```
delete dot1v_protocol_group group_id <id>
```

Description
This command is used to delete a protocol VLAN group.

Parameters
- `group_id <id>` – Enter an integer from 1 to 16 to identify the protocol VLAN group being deleted here.

Restrictions
Only Administrator and Operator-level users can issue this command.
To delete a protocol VLAN group:

```
DGS-3426:5#delete dot1v_protocol_group group_id 1
Command: delete dot1v_protocol_group group_id 1
Success.
DGS-3426:5#
```

```
show dot1v_protocol_group
```

Purpose

Used to display the configurations for a protocol VLAN group.

Syntax

`show dot1v_protocol_group {group_id <id>}`

Description

This command is used to display the configurations of a protocol VLAN group.

Parameters

- `group_id <id>` – Enter an integer from 1 to 16 to identify the protocol VLAN group to be displayed.

Entering this command without the `group_id` parameter will display the configurations for all configured protocol VLAN groups.

Restrictions

None.

Example usage:

To display the configurations for a protocol VLAN group:

```
DGS-3426:5#show dot1v_protocol_group group_id 1
Command: show dot1v_protocol_group group_id 1

<table>
<thead>
<tr>
<th>Protocol Group ID</th>
<th>Frame Type</th>
<th>Protocol Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EthernetII</td>
<td>86DD</td>
</tr>
</tbody>
</table>

Total Entries: 1
```

```
DGS-3426:5#
```
config port dot1v

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to bind a VLAN with a protocol template on one or more ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>config port dot1v ports [<portlist>] [all] [add protocol_group group_id <id> [vlan<vlan_name 32>]</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to bind a VLAN with a protocol template on one or more ports. When an ingress untagged packet is identified by the protocol_value stated using the config dot1v protocol_group command, the switch will assign a pre-configured VLAN and a priority for these ingress untagged packets in order to properly reach their destination.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ports – Use this parameter to specify ports.</td>
</tr>
<tr>
<td></td>
<td>• <portlist> – Use this parameter to assign a port or group of ports.</td>
</tr>
<tr>
<td></td>
<td>• all – Use this parameter to specify all ports on the system.</td>
</tr>
<tr>
<td></td>
<td>add protocol_group group_id <id> – Enter an integer from 1 to 16 to identify the protocol VLAN group being assigned to the ports or range of ports configured in the previous field.</td>
</tr>
<tr>
<td></td>
<td>vlan – Use this parameter bind a VLAN with a specific protocol template using either of the following parameters:</td>
</tr>
<tr>
<td></td>
<td>• vlan_name 32 – Identify the VLAN name for which to add a tag to ingress untagged packets.</td>
</tr>
<tr>
<td></td>
<td>• <vlanid>- Identify the VLAN-ID for which to add a tag to ingress untagged packets</td>
</tr>
<tr>
<td></td>
<td>delete protocol_group – Use this parameter to remove this protocol VLAN group’s association with the ports stated in this command, by using the following parameters:</td>
</tr>
<tr>
<td></td>
<td>• group_id <id> – Enter this parameter with its corresponding group number, to remove this pre-defined protocol group from the ports specified here.</td>
</tr>
<tr>
<td></td>
<td>• all – Use this parameter to remove all protocol VLAN groups from the ports specified in this command.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To bind a VLAN with a protocol template:

```
DGS-3426:5#config port dot1v ports 1:6-1:8 add protocol_group group_id 1 vlan vlan_name building1
Command: config port dot1v ports 1:6-1:8 add protocol_group group_id 1 vlan vlan_name building1
Success.
DGS-3426:5#
```

show port dot1v

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the bound protocol template on a specific port or ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show port dot1v {ports <portlist>}</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the protocol VLAN group and VLANs for individual ports.</td>
</tr>
<tr>
<td>Parameters</td>
<td>ports <portlist> – Enter the port or group of ports for which to display the protocol VLAN group settings. Entering this command without this parameter will display all ports and their corresponding protocol VLAN group settings.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

450
Example usage:

To configure the ports for a protocol VLAN group:

```
DGS-3426:5#show port dot1v ports 1:6-1:8
Command: show port dot1v ports 1:6-1:8

Port: 1:6
Protocol Group ID               VLAN Name
-----------------------------------
1                                 RG1

Port: 1:7
Protocol Group ID               VLAN Name
-----------------------------------
1                                 RG1

Port: 1:8
Protocol Group ID               VLAN Name
-----------------------------------
1                                 RG1

Total Entries: 3
```

DGS-3426:5#
MULTICAST VLAN REPLICATION COMMANDS

The Multicast VLAN Replication commands in the Command Line Interface (CLI) are listed (along with the appropriate parameters) in the following table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable ipmc_vlan_replication</td>
<td></td>
</tr>
<tr>
<td>disable ipmc_vlan_replication</td>
<td></td>
</tr>
<tr>
<td>config ipmc_vlan_replication</td>
<td>((\text{ttl} \ [\text{decrease} \</td>
</tr>
<tr>
<td>create ipmc_vlan_replication_entry</td>
<td>(<\text{name} \ 16>)</td>
</tr>
<tr>
<td>config ipmc_vlan_replication_entry</td>
<td>(<\text{name} \ 16> \ [\text{vlan} \ <\text{vlan_name} \ 32> \</td>
</tr>
<tr>
<td>config ipmc_vlan_replication_entry</td>
<td>(<\text{name} \ 16> \ [\text{vlan} \ <\text{vlan_name} \ 32> \</td>
</tr>
<tr>
<td>delete ipmc_vlan_replication_entry</td>
<td>(<\text{name} \ 16>)</td>
</tr>
<tr>
<td>show ipmc_vlan_replication</td>
<td></td>
</tr>
<tr>
<td>show ipmc_vlan_replication_entry</td>
<td>(<\text{name} \ 16>)</td>
</tr>
</tbody>
</table>

Each command is listed, in detail, in the following sections.

enable ipmc_vlan_replication

Purpose: Used to enable static IP multicast VLAN replication on the Switch.

Syntax: `enable ipmc_vlan_replication`

Description: This command is used to enable static IP multicast VLAN replication on the Switch. The replication function is enabled by default.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.

Example usage:

To enable static IP multicast VLAN replication:

```
DGS-3426:5#enable ipmc_vlan_replication
Command: enable ipmc_vlan_replication
Success.
DGS-3426:5#
```

disable ipmc_vlan_replication

Purpose: Used to disable the static IP multicast VLAN replication on the Switch.

Syntax: `disable ipmc_vlan_replication`

Description: This command is used to disable the static IP multicast VLAN replication on the switch.

Parameters: None.

Restrictions: Only Administrator and Operator-level users can issue this command.
Example usage:

To disable the static IP multicast VLAN replication:

```
DGS-3426:5#disable ipmc_vlan_replication
Command: disable ipmc_vlan_replication
Success.
DGS-3426:5#
```

config ipmc_vlan_replication

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to configure the IP multicast VLAN replication global settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`config ipmc_vlan_replication {ttl [decrease</td>
</tr>
<tr>
<td>Description</td>
<td>Generally, when a multicast packet is forwarded across VLANs, the ttl will be decreased by one. If no_decrease is specified, the ttl will not be decreased. Similarly, it can be specified to replace source Mac address for packet to be forwarded across VLAN.</td>
</tr>
<tr>
<td>Parameters</td>
<td>`ttl [decrease</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>

Example usage:

To specify that the ttl decreases for the IP multicast VLAN replicated packet:

```
DGS-3426:5#config ipmc_vlan_replication ttl decrease
Command: config ipmc_vlan_replication ttl decrease
Success.
DGS-3426:5#
```

create ipmc_vlan_replication_entry

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to create an IP multicast VLAN replication entry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>create ipmc_vlan_replication_entry <name 16></code></td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to create an IPMC VLAN replication entry. The entry will be identified by name. An IP multicast VLAN replication entry defines what traffic will be replicated and how the packet will be replicated.</td>
</tr>
<tr>
<td>Parameters</td>
<td><code><name 16></code> – The name of the IP multicast VLAN replication entry.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Only Administrator and Operator-level users can issue this command.</td>
</tr>
</tbody>
</table>
Example usage:

To create an IP multicast VLAN replication entry:

```
DGS-3426:5# create ipmc_vlan_replication_entry rg1
Command: create ipmc_vlan_replication_entry rg1
Success.
DGS-3426:5#
```

```
config ipmc_vlan_replication_entry source
Purpose Used to configure the source traffic of an IP multicast VLAN replication entry.
Syntax
config ipmc_vlan_replication_entry source <name 16> [[vlan <vlan_name 32> |vlanid <vlanid 1-4094> [ [group [add | delete] [mcast_ip <mcast_address_list> |mcast_ipv6 <mcastv6_address_list> ] [ [source_ip <ipaddr> | source_ipv6 <ip6addr> ] ] ] ]]
Description
This command is used to configure the traffic to be replicated by the IP multicast VLAN replication entry. The traffic is described by a source VLAN, a list of multicast group addresses and an optional source IP address associated with the multicast group. Each (V, G, S) will consume one resource entry. Therefore, the resource entry consumed by a replication entry is not constant and it will be determined by the number of (V, G, S) pair defined by the entry.
If the entries (V, G, S) and (V, G, *) both exist in the table, the entries (V,G, *) will not take effect.
Parameters
  <name 16> – The name of the IP multicast VLAN replication entry.
  vlan <vlan_name 32> – The source VLAN name.
  vlanid <vlanid 1-4094> – The source vlan id.
  group [add | delete] – Specifies to add or delete multicast IP address.
  mcast_ip <mcast_address_list> – IPv4 multicast address list.
  mcast_ipv6 <mcastv6_address_list> – IPv6 multicast address list.
  source_ip <ipaddr> – IPv4 source address.
  source_ipv6 <ip6addr> – IPv6 source address.
Restrictions
Only Administrator and Operator-level users can issue this command.
```

Example usage:

To set the source VLAN of an IP multicast VLAN replication entry to VLAN v2:

```
DGS-3426:5# config ipmc_vlan_replication_entry source rg1 vlan v2
Command: config ipmc_vlan_replication_entry source rg1 vlan v2
Success
DGS-3426:5#
```
config ipmc_vlan_replication_entry destination

Purpose
Used to configure the destination of an IP multicast VLAN replication entry.

Syntax
config ipmc_vlan_replication_entry destination <name 16> [add|delete] [vlan <vlan_name 32> | vlanid <vidlist>] ports <portlist>

Description
For the traffic that matches an IPMC VLAN replication entry, it will be replicated based on the destination settings. Multiple destination entries can be defined for an IPMC VLAN replication entry. Each destination entry specifies the VLAN and the outgoing port on which the traffic will be replicated. The outgoing port must be a member port of the VLAN. Whether a packet egress to a port is tagged or untagged will be determined by the VLAN setting.

Parameters
- `<name 16>` – The name of the IP multicast VLAN replication entry.
- `[add|delete]` – add or delete destination.
- `vlan <vlan_name 32>` – The outgoing vlan name.
- `vlanid <vidlist>` – The outgoing vlan ID.
- `ports <portlist>` – The outgoing port list.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To configure the destination of an IP multicast VLAN replication entry:

```
DGS-3426:5#config ipmc_vlan_replication_entry destination rg1 add vlanid 5 ports 10-17
Command: config ipmc_vlan_replication_entry destination rg1 add vlanid 5 ports 1:10-1:17
Success.
DGS-3426:5#
```

delete ipmc_vlan_replication_entry

Purpose
Used to delete an IP multicast VLAN replication entry.

Syntax
delete ipmc_vlan_replication_entry <name 16>

Description
This command is used to delete an IP multicast VLAN replication entry.

Parameters
- `<name 16>` – The name of the IP multicast VLAN replication entry.

Restrictions
Only Administrator and Operator-level users can issue this command.

Example usage:

To delete an IP multicast VLAN replication entry:

```
DGS-3426:5#delete ipmc_vlan_replication_entry rg1
Command: delete ipmc_vlan_replication_entry rg1
Success.
DGS-3426:5#
```
show ipmc_vlan_replication

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the IP multicast VLAN replication global settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show ipmc_vlan_replication</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the IP multicast VLAN replication global settings.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display an IP multicast VLAN replication global configure:

```plaintext
DGS-3426:5# show ipmc_vlan_replication
Command: show ipmc_vlan_replication

IP Multicast VLAN Replication State : Disabled
TTL : No Decrease
Source MAC Address : Replace

DGS-3426:5#
```

show ipmc_vlan_replication_entry

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Used to display the IP multicast VLAN replication entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>show ipmc_vlan_replication_entry (<name 16>)</td>
</tr>
<tr>
<td>Description</td>
<td>This command is used to display the IP multicast VLAN replication entry.</td>
</tr>
<tr>
<td>Parameters</td>
<td>(<name 16>) – The name of the IP multicast VLAN replication entry.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None.</td>
</tr>
</tbody>
</table>

Example usage:

To display an IP multicast VLAN replication entry:

```plaintext
DGS-3426:5# show ipmc_vlan_replication_entry rg1
Command: show ipmc_vlan_replication_entry rg1

IP Multicast VLAN Replication Name : rg1
---------------------------------------------
Source
VLAN ID/Name : 1/default
Multicast Group Address List (G/S)
  225.1.1.1-225.1.1.10 / *
  225.1.1.1-225.1.1.10 / 10.0.0.1

Destination
VLAN ID/Name : 2/ VLAN2
  Portlist : 1:1-1:11,1:13

DGS-3426:5#
```
TECHNICAL SPECIFICATIONS

Specifications listed here apply to all Switches in the xStack® DGS–3400 Series except where otherwise noted.

| Standards | IEEE 802.3 10BASE–T Ethernet
| | IEEE 802.3u 100BASE–TX Fast Ethernet
| | IEEE 802.3ab 1000BASE–T Gigabit Ethernet
| | IEEE 802.3z 1000BASE–T (SFP “Mini GBIC”)
| | IEEE 802.3ae (10G Optional Modules)
| | IEEE 802.1D/w/s Spanning Tree (Rapid, Multiple)
| | IEEE 802.1P/Q VLAN
| | IEEE 802.1p Priority Queues
| | IEEE 802.1v Protocol VLAN
| | IEEE 802.1X Network Access Control
| | IEEE 802.3 Nway auto–negotiation
| | IEEE 802.3ad Link Aggregation Control
| | IEEE 802.3x Full–duplex Flow Control
| | IEEE 802.1u Fast Ethernet
| | IEEE 802.3af Power–over–Ethernet
| Protocols | CSMA/CD
| Data Transfer Rates: | Half–duplex
| Ethernet | 10 Mbps
| Fast Ethernet | 100Mbps
| Gigabit Ethernet | 1000Mbps
| Fiber Optic | SFP (Mini GBIC) Support
| | IEEE 802.3z 1000BASE–LX (DEM–310GT transceiver)
| | IEEE 802.3z 1000BASE–SX (DEM–311GT transceiver)
| | IEEE 802.3z 1000BASE–SX (DEM–312GT2 transceiver)
| | IEEE 802.3z 1000BASE–LH (DEM–314GT transceiver)
| | IEEE 802.3z 1000BASE–ZX (DEM–315GT transceiver)
| | WDM Single Mode Transceiver 10km (DEM–330T/R)
| | WDM Single Mode Transceiver 40km (DEM–331T/R)
| Topology | Star
| Network Cables | Cat.5 Enhanced for 1000BASE–T
| | UTP Cat.5, Cat. 5 Enhanced for 100BASE–TX
| | UTP Cat.3, 4, 5 for 10BASE–T
| | EIA/TIA–568 100–ohm screened twisted–pair (STP)(100m)

Physical and Environmental

<table>
<thead>
<tr>
<th>Internal power supply</th>
<th>Redundant power supply</th>
<th>AC Input: 100 – 240 VAC, 50–60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption</td>
<td>DGS–3400 Series Switch</td>
<td>Module Inserts</td>
</tr>
<tr>
<td></td>
<td>DGS–3426 (78.2 Watts)</td>
<td>DEM–410CX (0.015 Watts)</td>
</tr>
<tr>
<td></td>
<td>DGS–3426P (517.0 Watts)</td>
<td>DEM–410X (6.16 Watts)</td>
</tr>
<tr>
<td></td>
<td>DGS–3427 (86.68 Watts)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DGS–3450 (144.47 Watts)</td>
<td></td>
</tr>
<tr>
<td>DC fans:</td>
<td>12 V fans</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 – 40°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>–40 – 70°C</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>5 – 95% non–condensing</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>441mm x 389mm x 44mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>DGS–3400 Series Switch</td>
<td>Module Inserts</td>
</tr>
<tr>
<td></td>
<td>DGS–3426 (5.42 kg)</td>
<td>DEM–410CX (0.16 kg)</td>
</tr>
<tr>
<td></td>
<td>DGS–3426P (6 kg)</td>
<td>DEM–410X (0.18 kg)</td>
</tr>
<tr>
<td></td>
<td>DGS–3427 (5.51 kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DGS–3450 (5.74 kg)</td>
<td></td>
</tr>
<tr>
<td>EMI:</td>
<td>CE class A, FCC Class A</td>
<td></td>
</tr>
<tr>
<td>Safety:</td>
<td>CSA International, CB Report</td>
<td></td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Transmission Method</th>
<th>Store–and–forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Buffer</td>
<td>0.75 MB per device</td>
</tr>
<tr>
<td>Packet Filtering / Forwarding Rate</td>
<td>Full–wire speed for all connections. 1,488,095 pps per port (for 1000Mbps)</td>
</tr>
<tr>
<td>MAC Address Learning</td>
<td>Automatic update. Supports 8K MAC address.</td>
</tr>
<tr>
<td>Priority Queues</td>
<td>8 Priority Queues per port.</td>
</tr>
<tr>
<td>Forwarding Table Age Time</td>
<td>Max age: 10–1000000 seconds. Default = 300.</td>
</tr>
</tbody>
</table>